找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; John Guckenheimer,Philip Holmes Book 1983 Springer Science+B

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 10:29:30 | 只看該作者
John Guckenheimer,Philip Holmescortical systems—the neocortical and the limbic. Fibers that connect two neurons within the telencephalon are called .. Fibers that connect a telencephalic neuron with a sub-telencephalic neuron (at the diencephalon, brainstem, or spinal cord) are called .. The association fibers can be divided into
12#
發(fā)表于 2025-3-23 14:07:36 | 只看該作者
13#
發(fā)表于 2025-3-23 18:11:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:56:18 | 只看該作者
Introduction: Differential Equations and Dynamical Systems, approach which we develop in this book. After recalling the basic existence and uniqueness theorems, we consider the linear, homogeneous, constant coefficient system and then introduce nonlinear and time-dependent systems and concepts such as the Poincaré map and structural stability. We then revie
15#
發(fā)表于 2025-3-24 02:33:08 | 只看該作者
An Introduction to Chaos: Four Examples, periodically forced single degree of freedom oscillators, a three-dimensional autonomous differential equation, and a two-dimensional map. The oscillators of van der Pol [1927] and Duffing [1918] originally arose as models in electric circuit theory and solid mechanics, respectively, while the Lore
16#
發(fā)表于 2025-3-24 10:11:34 | 只看該作者
Local Bifurcations,ich appear in the defining systems of equations. As these parameters are varied, changes may occur in the qualitative structure of the solutions for certain parameter values. These changes are called . and the parameter values are called .. To the extent possible, we develop in this chapter and Chap
17#
發(fā)表于 2025-3-24 11:01:54 | 只看該作者
Averaging and Perturbation from a Geometric Viewpoint,thods might be familiar to the reader who has studied nonlinear mechanics and perturbation theory, the present geometrical approach and the stress on obtaining approximations to Poincaré maps will probably be less familiar.
18#
發(fā)表于 2025-3-24 16:22:03 | 只看該作者
19#
發(fā)表于 2025-3-24 21:25:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
微山县| 乐亭县| 洛宁县| 且末县| 东源县| 莫力| 开远市| 平和县| 比如县| 丹寨县| 尤溪县| 灵宝市| 同德县| 西吉县| 香河县| 阳原县| 卓尼县| 利津县| 观塘区| 贺州市| 花莲市| 双鸭山市| 鄂托克前旗| 苗栗市| 徐水县| 册亨县| 陕西省| 射洪县| 渭南市| 兴海县| 南投市| 奎屯市| 武山县| 紫金县| 舞阳县| 伊川县| 峡江县| 赤壁市| 临沭县| 诸暨市| 福建省|