找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Numerical Methods and Rational Approximation II; Annie Cuyt Book 1994 Springer Science+Business Media Dordrecht 1994 Meromorphic

[復(fù)制鏈接]
樓主: retort
41#
發(fā)表于 2025-3-28 15:54:33 | 只看該作者
Recurrence Relations in the Table of Vector Orthogonal PolynomialsVector orthogonal polynomials appeared as the denominators of vector approximants ([2]). To compute these last ones or to study the orthogonality itself, it is useful to be able to move in the table of the polynomials. It is obviously the first step before studying non regular cases of vector-orthogonality.
42#
發(fā)表于 2025-3-28 20:33:05 | 只看該作者
Padé-Type Approximants and Multivariate Polynomial InterpolationPadé-type approximants of a formal power series can be automatically derived from polynomial interpolants of some generating function of this series. Several examples are given, with special emphasis on Hakopian’s multivariate polynomial interpolants of types I and II.
43#
發(fā)表于 2025-3-29 00:04:34 | 只看該作者
44#
發(fā)表于 2025-3-29 05:19:57 | 只看該作者
45#
發(fā)表于 2025-3-29 11:07:24 | 只看該作者
46#
發(fā)表于 2025-3-29 12:34:59 | 只看該作者
47#
發(fā)表于 2025-3-29 18:26:10 | 只看該作者
48#
發(fā)表于 2025-3-29 21:58:24 | 只看該作者
Matrix Rational Interpolation with Poles as Interpolation Pointsuivalence provides an effective method for computing matrix rational interpolants having poles as interpolation points. However, this equivalence is only valid in those cases where enough pole information is known. It is an open problem on how one can transform the pole problem to a no-pole problem in other cases.
49#
發(fā)表于 2025-3-30 00:28:06 | 只看該作者
50#
發(fā)表于 2025-3-30 06:50:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰州市| 衡山县| 肃北| 青神县| 庄浪县| 双桥区| 嘉禾县| 蒙城县| 集贤县| 阿勒泰市| 瓮安县| 孟州市| 额尔古纳市| 云霄县| 高雄市| 莱西市| 永寿县| 怀仁县| 铜梁县| 海淀区| 博白县| 米泉市| 宁津县| 普兰县| 东丰县| 西充县| 印江| 建湖县| 卫辉市| 新巴尔虎左旗| 五华县| 资阳市| 维西| 铜梁县| 西峡县| 万年县| 花莲市| 重庆市| 武平县| 峨山| 威远县|