找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Numerical Methods and Rational Approximation II; Annie Cuyt Book 1994 Springer Science+Business Media Dordrecht 1994 Meromorphic

[復(fù)制鏈接]
樓主: retort
11#
發(fā)表于 2025-3-23 13:05:36 | 只看該作者
Orthogonality and Boundary Interpolation quasi-definite linear functional on., and define the inner product., where .. (In particular . may be a positive definite functional given by.,where μ is a measure such that all functions in . are μ-integrable).Let .be an orthogonal system obtained from the basis . by the Gram-Sdunidt method and de
12#
發(fā)表于 2025-3-23 16:22:53 | 只看該作者
13#
發(fā)表于 2025-3-23 20:50:13 | 只看該作者
Gegenbauer-Sobolev Orthogonal Polynomialsmials algebraic and differential properties are obtained, as well as the relation with the classical Gegenbauer polynomials Finally, some properties concerning the localization and separation of the zeros of these polynomials are deduced.
14#
發(fā)表于 2025-3-24 01:25:20 | 只看該作者
Inverse Problems: Rational Modificationsequation . for α ∈ – {0} If we fix a solution . we obtain the corresponding sequence of moments, characterize the regularity and we determine the expression for the sequence of monic orthogonal polynomials related to .. Finally we study the positive definite case, we obtain the relation between the
15#
發(fā)表于 2025-3-24 02:53:46 | 只看該作者
Normality and Error Formulae for Simultaneous Rational Approximants to Nikishin Systems and continued fractions in a very natural way. As in the case of Padé approximants so also here Markov functions are especially interesting and important. The common denominator of the simultaneous approximants satisfies a multiple orthogonality relation, which in the case of Markov functions is de
16#
發(fā)表于 2025-3-24 08:19:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:13:37 | 只看該作者
18#
發(fā)表于 2025-3-24 17:16:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:35 | 只看該作者
20#
發(fā)表于 2025-3-25 00:49:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
嘉峪关市| 西藏| 常熟市| 司法| 黑水县| 六安市| 邯郸县| 华宁县| 昭通市| 土默特左旗| 蒲江县| 逊克县| 综艺| 曲靖市| 辽阳市| 革吉县| 肥西县| 皮山县| 西乌珠穆沁旗| 玉环县| 乐业县| 修武县| 华阴市| 阜新市| 耒阳市| 彭州市| 台东市| 方山县| 淮安市| 武穴市| 彭山县| 轮台县| 鹤岗市| 交城县| 巍山| 铁岭县| 原平市| 临猗县| 苗栗市| 晋中市| 磐石市|