找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Mathematics for Uncertainty and its Applications; Shoumei Li,Xia Wang,Li Guan Conference proceedings 2011 Springer Berlin Heidel

[復(fù)制鏈接]
樓主: Gram114
31#
發(fā)表于 2025-3-27 00:24:22 | 只看該作者
Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity,uity. Our results are natural extensions of the classical Kolmogorov’s strong law of large numbers to the case where probability measures become to imprecise. Finally, an important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
32#
發(fā)表于 2025-3-27 01:20:06 | 只看該作者
On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts, setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R?dstr?m embedding theorem.
33#
發(fā)表于 2025-3-27 06:31:22 | 只看該作者
Upper Derivatives of Set Functions Represented as the Choquet Indefinite Integral, derivative of . at a measurable set . with respect to a measure . is, under a certain condition, equal to the difference calculated by subtracting the product of the negative part ... and the lower derivative of . at the whole set with respect to . from the product of the positive part .. and the upper derivative of . at . with respect to ..
34#
發(fā)表于 2025-3-27 12:56:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:09 | 只看該作者
Fuzzy Stochastic Integral Equations Driven by Martingales,l and a notion of fuzzy stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of fuzzy stochastic integral equations. We investigate the existence and uniqueness of solution to such the equations.
37#
發(fā)表于 2025-3-27 23:31:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:41:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集贤县| 梓潼县| 卫辉市| 内丘县| 漳浦县| 康平县| 太原市| 三江| 乌鲁木齐市| 贺兰县| 东阿县| 杂多县| 浦县| 琼结县| 宜丰县| 宝坻区| 武城县| 右玉县| 丰县| 慈利县| 民乐县| 惠安县| 平利县| 曲阳县| 滨州市| 茌平县| 亳州市| 绵竹市| 伊宁市| 醴陵市| 郎溪县| 铜山县| 山西省| 叶城县| 阿坝| 武川县| 鹤庆县| 和静县| 嘉禾县| 蓬溪县| 阳信县|