找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Mathematics for Uncertainty and its Applications; Shoumei Li,Xia Wang,Li Guan Conference proceedings 2011 Springer Berlin Heidel

[復制鏈接]
樓主: Gram114
31#
發(fā)表于 2025-3-27 00:24:22 | 只看該作者
Strong Laws of Large Numbers for Bernoulli Experiments under Ambiguity,uity. Our results are natural extensions of the classical Kolmogorov’s strong law of large numbers to the case where probability measures become to imprecise. Finally, an important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.
32#
發(fā)表于 2025-3-27 01:20:06 | 只看該作者
On Spaces of Bochner and Pettis Integrable Functions and Their Set-Valued Counterparts, setting and the canonical Banach spaces of bounded maps between Banach spaces that they generate. The main tool that we use to relate the Banach space-valued case to the set-valued case, is the R?dstr?m embedding theorem.
33#
發(fā)表于 2025-3-27 06:31:22 | 只看該作者
Upper Derivatives of Set Functions Represented as the Choquet Indefinite Integral, derivative of . at a measurable set . with respect to a measure . is, under a certain condition, equal to the difference calculated by subtracting the product of the negative part ... and the lower derivative of . at the whole set with respect to . from the product of the positive part .. and the upper derivative of . at . with respect to ..
34#
發(fā)表于 2025-3-27 12:56:49 | 只看該作者
35#
發(fā)表于 2025-3-27 14:36:37 | 只看該作者
36#
發(fā)表于 2025-3-27 18:07:09 | 只看該作者
Fuzzy Stochastic Integral Equations Driven by Martingales,l and a notion of fuzzy stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of fuzzy stochastic integral equations. We investigate the existence and uniqueness of solution to such the equations.
37#
發(fā)表于 2025-3-27 23:31:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:41:20 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:06 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:23 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
加查县| 辽宁省| 射洪县| 卓资县| 吴堡县| 贞丰县| 东阿县| 禹城市| 长子县| 长沙县| 汤阴县| 绥滨县| 潮安县| 竹溪县| 杭锦旗| 马龙县| 友谊县| 庆安县| 临武县| 曲沃县| 淄博市| 新津县| 铁岭县| 潼关县| 衡山县| 北京市| 丽水市| 建阳市| 成都市| 芦山县| 迁安市| 宝应县| 三门峡市| 东至县| 济南市| 偃师市| 那曲县| 凤城市| 普陀区| 左云县| 虎林市|