找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Least Squares for Inverse Problems; Theoretical Foundati Guy Chavent Book 2010 Springer Science+Business Media B.V. 2010 analysis

[復(fù)制鏈接]
查看: 35174|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:19:02 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Nonlinear Least Squares for Inverse Problems
副標(biāo)題Theoretical Foundati
編輯Guy Chavent
視頻videohttp://file.papertrans.cn/668/667543/667543.mp4
概述Step-by-step guide to solving Nonlinear Inverse Problems with Least Square methods.Contains a geometric theory to analyze Wellposedness and Optimizability.Detailed analysis of practical issues when so
叢書(shū)名稱Scientific Computation
圖書(shū)封面Titlebook: Nonlinear Least Squares for Inverse Problems; Theoretical Foundati Guy Chavent Book 2010 Springer Science+Business Media B.V. 2010 analysis
描述The domain of inverse problems has experienced a rapid expansion, driven by the increase in computing power and the progress in numerical modeling. When I started working on this domain years ago, I became somehow fr- tratedtoseethatmyfriendsworkingonmodelingwhereproducingexistence, uniqueness, and stability results for the solution of their equations, but that I was most of the time limited, because of the nonlinearity of the problem, to provethatmyleastsquaresobjectivefunctionwasdi?erentiable....Butwith my experience growing, I became convinced that, after the inverse problem has been properly trimmed, the ?nal least squares problem, the one solved on the computer, should be Quadratically (Q)-wellposed,thatis,both we- posed and optimizable: optimizability ensures that a global minimizer of the least squares function can actually be found using e?cient local optimization algorithms, and wellposedness that this minimizer is stable with respect to perturbation of the data. But the vast majority of inverse problems are nonlinear, and the clas- cal mathematical tools available for their analysis fail to bring answers to these crucial questions: for example, compactness will ensure exi
出版日期Book 2010
關(guān)鍵詞analysis of NLS problems; analysis of nonlinear least square problems; choice of parametrization; inver
版次1
doihttps://doi.org/10.1007/978-90-481-2785-6
isbn_softcover978-94-007-3060-1
isbn_ebook978-90-481-2785-6Series ISSN 1434-8322 Series E-ISSN 2198-2589
issn_series 1434-8322
copyrightSpringer Science+Business Media B.V. 2010
The information of publication is updating

書(shū)目名稱Nonlinear Least Squares for Inverse Problems影響因子(影響力)




書(shū)目名稱Nonlinear Least Squares for Inverse Problems影響因子(影響力)學(xué)科排名




書(shū)目名稱Nonlinear Least Squares for Inverse Problems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Nonlinear Least Squares for Inverse Problems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Nonlinear Least Squares for Inverse Problems被引頻次




書(shū)目名稱Nonlinear Least Squares for Inverse Problems被引頻次學(xué)科排名




書(shū)目名稱Nonlinear Least Squares for Inverse Problems年度引用




書(shū)目名稱Nonlinear Least Squares for Inverse Problems年度引用學(xué)科排名




書(shū)目名稱Nonlinear Least Squares for Inverse Problems讀者反饋




書(shū)目名稱Nonlinear Least Squares for Inverse Problems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:38:39 | 只看該作者
地板
發(fā)表于 2025-3-22 07:33:51 | 只看該作者
5#
發(fā)表于 2025-3-22 12:07:57 | 只看該作者
Regularization of Nonlinear Least Squares Problems
6#
發(fā)表于 2025-3-22 16:52:40 | 只看該作者
Deflection Conditions for the Strict Quasi-convexity of Sets
7#
發(fā)表于 2025-3-22 20:51:49 | 只看該作者
8#
發(fā)表于 2025-3-23 00:59:02 | 只看該作者
9#
發(fā)表于 2025-3-23 01:49:59 | 只看該作者
978-94-007-3060-1Springer Science+Business Media B.V. 2010
10#
發(fā)表于 2025-3-23 07:26:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 08:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双鸭山市| 含山县| 城口县| 栖霞市| 孙吴县| 通辽市| 鸡西市| 岐山县| 湖北省| 射洪县| 舞钢市| 花莲市| 教育| 黎川县| 八宿县| 安福县| 疏勒县| 福安市| 桐梓县| 顺平县| 安阳市| 金昌市| 公主岭市| 英德市| 浑源县| 长宁区| 三明市| 孟州市| 余庆县| 屯昌县| 普兰店市| 柳州市| 财经| 桃园市| 都安| 渭南市| 达尔| 长沙市| 独山县| 祁连县| 秦安县|