找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Kalman Filtering for Force-Controlled Robot Tasks; Tine Lefebvre,Herman Bruyninckx,Joris Schutter Book 2005 Springer-Verlag Berl

[復(fù)制鏈接]
樓主: 你太謙虛
31#
發(fā)表于 2025-3-26 21:02:27 | 只看該作者
Tine Lefebvre,Herman Bruyninckx,Joris De Schutterents recent developments in the theory of Beltrami equations.This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmu
32#
發(fā)表于 2025-3-27 02:08:32 | 只看該作者
33#
發(fā)表于 2025-3-27 09:00:13 | 只看該作者
34#
發(fā)表于 2025-3-27 09:43:50 | 只看該作者
Tine Lefebvre,Herman Bruyninckx,Joris De Schuttersiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmuller spaces, Clifford analysis,? meromorphic functions, low dimensional topology, holomorphic motions, complex dynamics,? potential theory, electrostatics, magnetostatics,? hydrodynamics and magneto-hydrodynami
35#
發(fā)表于 2025-3-27 17:28:40 | 只看該作者
36#
發(fā)表于 2025-3-27 19:36:56 | 只看該作者
37#
發(fā)表于 2025-3-28 00:42:51 | 只看該作者
Tine Lefebvre,Herman Bruyninckx,Joris De Schutterents recent developments in the theory of Beltrami equations.This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmu
38#
發(fā)表于 2025-3-28 04:53:00 | 只看該作者
Tine Lefebvre,Herman Bruyninckx,Joris De Schutterents recent developments in the theory of Beltrami equations.This book is devoted to the Beltrami equations that play a significant role in Geometry, Analysis and Physics and, in particular, in the study of quasiconformal mappings and their generalizations, Riemann surfaces, Kleinian groups, Teichmu
39#
發(fā)表于 2025-3-28 08:41:01 | 只看該作者
40#
發(fā)表于 2025-3-28 13:16:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗山县| 增城市| 吉林省| 榆林市| 阜阳市| 上林县| 利津县| 平山县| 定日县| 瑞金市| 阿拉善盟| 焉耆| 隆子县| 聂荣县| 安徽省| 特克斯县| 民丰县| 诏安县| 达日县| 平度市| 琼结县| 循化| 托里县| 临安市| 云浮市| 交口县| 连江县| 怀集县| 吴忠市| 高淳县| 民权县| 独山县| 新竹县| 沙河市| 舟山市| 雷州市| 萨迦县| 珲春市| 嫩江县| 三亚市| 沽源县|