找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Ill-posed Problems of Monotone Type; YAKOV ALBER,IRINA RYAZANTSEVA Book 20061st edition Springer Science+Business Media B.V. 200

[復(fù)制鏈接]
樓主: 歸納
11#
發(fā)表于 2025-3-23 11:06:53 | 只看該作者
12#
發(fā)表于 2025-3-23 16:30:24 | 只看該作者
13#
發(fā)表于 2025-3-23 18:41:59 | 只看該作者
INTRODUCTION INTO THE THEORY OF MONOTONE AND ACCRETIVE OPERATORS, {xn} ? . to x ∈ X means that ∥x. ?x∥ → 0 as n→∞. In this case, x is a (strong) limit point of the sequence {x.}. If {x.} converges strongly to x ∈ X then 1) any subsequence {x.} ? {x.} also converges to the same point, 2) the sequence {∥xn ? ξ∥} is bounded for any ξ ∈ X.
14#
發(fā)表于 2025-3-23 22:44:12 | 只看該作者
PARAMETERIZATION OF REGULARIZATION METHODS,nt for the operator regularization methods to be convergent to solutions of monotone and accretive operator equations. However, such a wide choice of parameters does not possess the regularizing properties in the sense of De.nition 5 (see Preface). Our aim in this chapter is to indicate the ways to
15#
發(fā)表于 2025-3-24 05:04:05 | 只看該作者
978-90-481-7122-4Springer Science+Business Media B.V. 2006
16#
發(fā)表于 2025-3-24 08:22:25 | 只看該作者
INTRODUCTION INTO THE THEORY OF MONOTONE AND ACCRETIVE OPERATORS, {xn} ? . to x ∈ X means that ∥x. ?x∥ → 0 as n→∞. In this case, x is a (strong) limit point of the sequence {x.}. If {x.} converges strongly to x ∈ X then 1) any subsequence {x.} ? {x.} also converges to the same point, 2) the sequence {∥xn ? ξ∥} is bounded for any ξ ∈ X.
17#
發(fā)表于 2025-3-24 12:15:16 | 只看該作者
Book 20061st editionces has grown rapidly over recent years. Results in the field over the last three decades, previously only available in journal articles, are comprehensively explored with particular attention given to applications of regularization methods as well as to practical methods used in computational analysis...
18#
發(fā)表于 2025-3-24 16:11:29 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:10 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:12 | 只看該作者
REGULARIZATION OF VARIATIONAL INEQUALITIES,1. Let . be an E-space, .. be a strictly convex space, . : . → 2.. be a maximal monotone operator with domain D(A), Ω ? .(.) be a convex closed subset in .. Let either
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
益阳市| 札达县| 临武县| 大安市| 镇巴县| 深水埗区| 安陆市| 谢通门县| 裕民县| 攀枝花市| 布尔津县| 沾化县| 镇康县| 大同县| 温宿县| 瑞安市| 白玉县| 瑞昌市| 原阳县| 巴林右旗| 布尔津县| 哈尔滨市| 屯门区| 万荣县| 驻马店市| 高平市| 襄城县| 兰州市| 盘锦市| 江陵县| 师宗县| 泗阳县| 旬邑县| 磴口县| 泌阳县| 防城港市| 淮阳县| 宜都市| 岑巩县| 长沙市| 公主岭市|