找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution of Spatial Economic Systems; Peter Nijkamp,Aura Reggiani Book 1993 Springer-Verlag Berlin · Heidelberg 1993 Chaos Theo

[復(fù)制鏈接]
樓主: 削木頭
11#
發(fā)表于 2025-3-23 12:40:16 | 只看該作者
Lessons from Nonlinear Dynamic Economicsx, which is largely filled with linear and comparative static instruments. Clearly, linear economic models do not necessarily generate stable solutions, but their evolution is only capable of generating four types of time paths: oscillatory and stable; oscillatory and explosive; monotonic and stable
12#
發(fā)表于 2025-3-23 16:41:05 | 只看該作者
13#
發(fā)表于 2025-3-23 18:25:41 | 只看該作者
14#
發(fā)表于 2025-3-23 23:50:06 | 只看該作者
Complex Transient Motion in Continuous-Time Economic Modelsal applied sciences, an emphasis has been put on the description of so-called ., i.e., sets of points to which trajectories starting in a neighbourhood of this set eventually converge but which are neither a fixed point nor a closed curve. Strange attractors have attracted the attention of many econ
15#
發(fā)表于 2025-3-24 05:55:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:22 | 只看該作者
Microeconomics and the Dynamic Modelling of Spatial Systems the inadequacy of the treatment of time has been the most glaring. The adoption of the mathematics of nonlinearity has helped us to address some old problems in novel ways and it has opened up some important new lines of inquiry. However, some of the ways in which nonlinear dynamics has been incorp
17#
發(fā)表于 2025-3-24 14:08:51 | 只看該作者
18#
發(fā)表于 2025-3-24 15:09:28 | 只看該作者
Speculations on Fractal Geometry in Spatial Dynamicsing of real and natural systems with all their imperfections to the limit of our analytical powers, fractals and their geometry have attracted very widespread attention. The idea that the geometry of Euclid is but a special case of a more general geometry in which the irregular and the fractional ra
19#
發(fā)表于 2025-3-24 22:57:13 | 只看該作者
20#
發(fā)表于 2025-3-25 01:52:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余庆县| 前郭尔| 团风县| 太仓市| 武胜县| 承德县| 揭东县| 蕲春县| 吉林省| 岱山县| 南投市| 安龙县| 勐海县| 忻城县| 武汉市| 繁峙县| 麻栗坡县| 揭东县| 科技| 璧山县| 邹平县| 杭锦后旗| 清苑县| 保康县| 公主岭市| 峨眉山市| 布拖县| 宕昌县| 东山县| 小金县| 锦屏县| 象州县| 德江县| 汾阳市| 明星| 南川市| 隆化县| 彩票| 偏关县| 湘潭市| 公安县|