找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution and Chaotic Phenomena; Giovanni Gallavotti,Paul F. Zweifel Book 1988 Plenum Press, New York 1988 Renormalization group

[復(fù)制鏈接]
樓主: culinary
51#
發(fā)表于 2025-3-30 11:18:41 | 只看該作者
Nekhoroshev-Like Results for Hamiltonian Dynamical Systemsbility of motions in nearly-integrable Hamiltonian systems, and to show how the basic ideas and techniques entering this theorem can be extended to study some other dynamical systems, which are quite relevant for physics, but are not close to integrable ones.
52#
發(fā)表于 2025-3-30 14:10:09 | 只看該作者
Relevance of Exponentially Large Time Scales in Practical Applications: Effective Fractal Dimensions time scales rigorously introduced by recent results of classical perturbation theory. The possible relevance for the problem of comparing theoretical previsions with experimental results in statistical models is pointed out.
53#
發(fā)表于 2025-3-30 18:53:03 | 只看該作者
Numerical Results from Truncated Navier-Stokes Equationspriate parameters he found, very close together, a torus, a pseudo-periodic orbit of period 29 and a strange attractor. The numerical procedures were more-or-less standard, involving Newton’s method and iteration; the results were exciting.
54#
發(fā)表于 2025-3-30 22:30:28 | 只看該作者
A Simple and Compact Presentation of Birkhoff Seriestors yields a compact expression, which actually is a formal summation of the recurrence formulas usually obtained for the normal form of a quasi-integrable hamiltonian..Talk given at the school: “Non Linear Evolution and Chaotic Phenomena”-Noto, June 87
55#
發(fā)表于 2025-3-31 01:38:31 | 只看該作者
56#
發(fā)表于 2025-3-31 07:15:49 | 只看該作者
57#
發(fā)表于 2025-3-31 12:48:22 | 只看該作者
Quantum Mechanics and Chaosion. This type of motion is characterized by exponential instability of almost all orbits with respect to initial conditions. In turns this instability leads to loss of memory of initial conditions, decay of correlations and approach to statistical equilibrium.
58#
發(fā)表于 2025-3-31 13:49:13 | 只看該作者
59#
發(fā)表于 2025-3-31 20:39:34 | 只看該作者
60#
發(fā)表于 2025-4-1 01:16:48 | 只看該作者
NATO Science Series B:http://image.papertrans.cn/n/image/667491.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 02:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彭泽县| 敖汉旗| 松桃| 文昌市| 兴化市| 江安县| 南皮县| 东宁县| 呈贡县| 淮滨县| 普陀区| 长沙市| 松原市| 昆山市| 长岭县| 衡阳市| 丁青县| 望城县| 正蓝旗| 贞丰县| 漠河县| 改则县| 察雅县| 凤冈县| 泰来县| 且末县| 交口县| 密云县| 莱西市| 绥宁县| 榆社县| 鹰潭市| 新郑市| 兴仁县| 囊谦县| 手游| 苏尼特右旗| 湘阴县| 囊谦县| 肃南| 龙游县|