找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution Equations and Related Topics; Dedicated to Philipp Wolfgang Arendt,Ha?m Brézis,Michel Pierre Book 2004 Springer Basel A

[復制鏈接]
樓主: advocate
31#
發(fā)表于 2025-3-27 00:08:34 | 只看該作者
Intrinsic metrics and Lipschitz functions,is respect, we bring some precisions and complements to [.], notably concerning links with the notion of intrinsic metric ([.]). In the particular case of an abstract Wiener space, we establish the relationship between these notions and that of .-metric ([.]) and μ-a.e. .-Lipschitz continuous function ([.]).
32#
發(fā)表于 2025-3-27 02:20:28 | 只看該作者
33#
發(fā)表于 2025-3-27 06:29:55 | 只看該作者
34#
發(fā)表于 2025-3-27 11:12:27 | 只看該作者
On the regularizing effect of strongly increasing lower order terms,odel example is . where Ω is a bounded open set in ?., . is a continuous and increasing function such that ., for some δ>0.We also show a nonexistence result for some measures as data as in the model example . where . is the Dirac mass in ..(..∈Ω).
35#
發(fā)表于 2025-3-27 16:35:24 | 只看該作者
Nonautonomous heat equations with generalized Wentzell boundary conditions,ptions, that there exists a unique evolution family for this problem and that the family satisfies various regularity properties. This enables us to obtain, for the corresponding inhomogeneous problem, classical and strict solutions having optimal regularity.
36#
發(fā)表于 2025-3-27 20:16:14 | 只看該作者
Linearized stability for nonlinear evolution equations,ator A ? .x . in a Banach space . that has a linear ‘resolvent-derivative’ ? ? . x .. The result is applied to derive linearized stability results for the case of A = . under ‘minimal’ differentiability assumptions on the operators . ? . x . and . → at the equilibrium point, as well as for partial differential delay equations.
37#
發(fā)表于 2025-3-27 22:18:54 | 只看該作者
38#
發(fā)表于 2025-3-28 03:38:39 | 只看該作者
http://image.papertrans.cn/n/image/667488.jpg
39#
發(fā)表于 2025-3-28 09:04:37 | 只看該作者
40#
發(fā)表于 2025-3-28 14:06:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长垣县| 郯城县| 丰顺县| 达拉特旗| 敦化市| 新和县| 阳泉市| 江城| 揭西县| 镇巴县| 秦安县| 兖州市| 交口县| 阿坝县| 祁东县| 望奎县| 新津县| 台中市| 栾川县| 聂拉木县| 慈溪市| 冕宁县| 龙江县| 湘阴县| 长白| 闽清县| 米易县| 清远市| 陕西省| 高雄市| 秦皇岛市| 石台县| 高州市| 都江堰市| 乳山市| 卢湾区| 贞丰县| 湘潭县| 岳阳县| 高唐县| 永顺县|