找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Evolution Equations and Related Topics; Dedicated to Philipp Wolfgang Arendt,Ha?m Brézis,Michel Pierre Book 2004 Springer Basel A

[復(fù)制鏈接]
樓主: advocate
31#
發(fā)表于 2025-3-27 00:08:34 | 只看該作者
Intrinsic metrics and Lipschitz functions,is respect, we bring some precisions and complements to [.], notably concerning links with the notion of intrinsic metric ([.]). In the particular case of an abstract Wiener space, we establish the relationship between these notions and that of .-metric ([.]) and μ-a.e. .-Lipschitz continuous function ([.]).
32#
發(fā)表于 2025-3-27 02:20:28 | 只看該作者
33#
發(fā)表于 2025-3-27 06:29:55 | 只看該作者
34#
發(fā)表于 2025-3-27 11:12:27 | 只看該作者
On the regularizing effect of strongly increasing lower order terms,odel example is . where Ω is a bounded open set in ?., . is a continuous and increasing function such that ., for some δ>0.We also show a nonexistence result for some measures as data as in the model example . where . is the Dirac mass in ..(..∈Ω).
35#
發(fā)表于 2025-3-27 16:35:24 | 只看該作者
Nonautonomous heat equations with generalized Wentzell boundary conditions,ptions, that there exists a unique evolution family for this problem and that the family satisfies various regularity properties. This enables us to obtain, for the corresponding inhomogeneous problem, classical and strict solutions having optimal regularity.
36#
發(fā)表于 2025-3-27 20:16:14 | 只看該作者
Linearized stability for nonlinear evolution equations,ator A ? .x . in a Banach space . that has a linear ‘resolvent-derivative’ ? ? . x .. The result is applied to derive linearized stability results for the case of A = . under ‘minimal’ differentiability assumptions on the operators . ? . x . and . → at the equilibrium point, as well as for partial differential delay equations.
37#
發(fā)表于 2025-3-27 22:18:54 | 只看該作者
38#
發(fā)表于 2025-3-28 03:38:39 | 只看該作者
http://image.papertrans.cn/n/image/667488.jpg
39#
發(fā)表于 2025-3-28 09:04:37 | 只看該作者
40#
發(fā)表于 2025-3-28 14:06:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 11:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
津市市| 舒城县| 曲周县| 普陀区| 桃源县| 邻水| 巴中市| 六盘水市| 吉隆县| 海丰县| 新余市| 高阳县| 永宁县| 顺平县| 郯城县| 阿城市| 九龙县| 资中县| 姜堰市| 出国| 祁阳县| 健康| 丰镇市| 兴宁市| 固阳县| 盐亭县| 青浦区| 周口市| 额济纳旗| 利川市| 娄烦县| 东至县| 定远县| 富顺县| 凉城县| 清徐县| 鸡泽县| 咸阳市| 荣昌县| 紫阳县| 曲水县|