找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Eigenproblems in Image Processing and Computer Vision; Guy Gilboa Book 2018 Springer International Publishing AG, part of Spring

[復(fù)制鏈接]
樓主: 厭倦了我
31#
發(fā)表于 2025-3-27 00:59:12 | 只看該作者
Guy GilboaThe first book on this topic, relating the new theory to image processing and computer vision applications.Integrates deep mathematical concepts from various fields into a coherent manuscript with plo
32#
發(fā)表于 2025-3-27 01:49:21 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:23 | 只看該作者
34#
發(fā)表于 2025-3-27 10:11:46 | 只看該作者
35#
發(fā)表于 2025-3-27 15:36:42 | 只看該作者
36#
發(fā)表于 2025-3-27 20:40:31 | 只看該作者
37#
發(fā)表于 2025-3-28 01:06:17 | 只看該作者
Applications Using Nonlinear Spectral Processing,cement, and image fusion. This area is currently investigated and developed. A main theme is that following the image decomposition one can use very basic operations of attenuating, enhancing, and mixing certain spectral bands. Thus, a single framework with a solid theory can have very diverse appli
38#
發(fā)表于 2025-3-28 05:31:30 | 只看該作者
Numerical Methods for Finding Eigenfunctions, In the variational context, the research is quite preliminary. We outline the method of Hein and Buhler, based on the Rayleigh quotient. We present in more detail a recent work by Raz Nossek and the author where a flow is used to solve the problem. This can be generalized in various ways. A general
39#
發(fā)表于 2025-3-28 06:37:39 | 只看該作者
,Beyond Convex Analysis—Decompositions with Nonlinear Flows,as nonlinear operators, and the coarsening scale space they induce can be analyzed in a spectral manner. We provide some basic assumptions that help us solve the new spectral decomposition problem. Essentially, a common decay profile is sought in order to decompose the image. It is shown that this g
40#
發(fā)表于 2025-3-28 12:10:14 | 只看該作者
Relations to Other Decomposition Methods, wavelets are given, showing one can recover wavelet processing within this framework. In the specific case of Haar wavelet, which is actually a small subset of the eigenfunction of TV, it is shown how the spectral TV can adapt better to the signal. A numerical example shows that fewer elements are
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰顺县| 米脂县| 新乐市| 张北县| 大洼县| 繁峙县| 阿图什市| 临城县| 香格里拉县| 曲阳县| 郁南县| 青冈县| 滁州市| 翼城县| 来宾市| 五台县| 广饶县| 玛纳斯县| 舞钢市| 甘谷县| 满洲里市| 永宁县| 万安县| 巴青县| 循化| 仁化县| 万全县| 吉林省| 南陵县| 尖扎县| 石台县| 桑日县| 商洛市| 彰化县| 江川县| 襄城县| 文山县| 城固县| 晋江市| 宜良县| 湄潭县|