找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics of Structures, Systems and Devices; Proceedings of the F Walter Lacarbonara,Balakumar Balachandran,Gabor St Conference p

[復(fù)制鏈接]
樓主: 涌出
41#
發(fā)表于 2025-3-28 17:15:12 | 只看該作者
42#
發(fā)表于 2025-3-28 20:45:54 | 只看該作者
43#
發(fā)表于 2025-3-29 02:38:35 | 只看該作者
44#
發(fā)表于 2025-3-29 05:31:24 | 只看該作者
45#
發(fā)表于 2025-3-29 09:48:25 | 只看該作者
46#
發(fā)表于 2025-3-29 12:12:34 | 只看該作者
Boundary Layer Dynamics of Multibody Systems Involving Impact and Frictionto a frictional impact. The analysis is performed by using concepts of Analytical Dynamics and differential geometry. This sets a strong foundation for applying Newton’s law of motion and leads to an illuminating description of the dynamics. Using the unilateral constraint, a boundary is first defin
47#
發(fā)表于 2025-3-29 15:57:30 | 只看該作者
48#
發(fā)表于 2025-3-29 22:14:03 | 只看該作者
Analogue Models of Rocking Suitcases and Snaking Trailersnd the linearized equations of motion are presented. The linear stability of the rectilinear motion is investigated, critical parameter values are determined for the different level of complexity of the model. Numerical simulations are used to verify the applicability of the model for the nonlinear
49#
發(fā)表于 2025-3-30 01:21:58 | 只看該作者
50#
發(fā)表于 2025-3-30 05:30:13 | 只看該作者
Stability of Coupled and Damped Mathieu Equations Utilizing Symplectic Propertieso describe the stability of coupled Mathieu equations. However, sometimes the averaging and perturbation techniques deal with cumbersome computations, and the numerical methods spend considerable resources and computation time. This contribution extends the definition of linear Hamiltonian systems t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德县| 缙云县| 西充县| 响水县| 基隆市| 小金县| 都匀市| 漳州市| 高清| 凌云县| 宜都市| 平谷区| 南平市| 龙川县| 根河市| 信丰县| 漳浦县| 汉寿县| 丁青县| 东台市| 科尔| 弥渡县| 闵行区| 紫云| 通河县| 黑河市| 泉州市| 徐州市| 来安县| 壤塘县| 永胜县| 栾城县| 汪清县| 阜新市| 泊头市| 天柱县| 阳城县| 抚远县| 广平县| 嵊州市| 阳曲县|