找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Dynamics of Discrete and Continuous Systems; Andrei K. Abramian,Igor V. Andrianov,Valery A. Gai Book 2021 Springer Nature Switze

[復(fù)制鏈接]
樓主: CILIA
11#
發(fā)表于 2025-3-23 09:58:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:25:37 | 只看該作者
,Galerkin’s Method was not Developed by Ritz, Contrary to the Timoshenko’s Statement,o-author a paper on the priority associated with the Galerkin method, claiming that it belongs solely to I. G. Bubnov (1872–1919). Although a joint paper by Timoshenko and Grigolyuk was never written, Timoshenko expressed an interest in such an endeavor. These correspondents, namely, B. G. Galerkin,
13#
發(fā)表于 2025-3-23 20:05:19 | 只看該作者
14#
發(fā)表于 2025-3-24 00:31:57 | 只看該作者
The Dynamic Interactions and Control of Long Slender Continua and Discrete Inertial Components in Veneral approach to model the dynamic behaviour of a typical vertical transportation system is demonstrated. Subsequently, a mathematical model is developed which is solved numerically to predict the non-stationary/nonlinear dynamic responses. An active control strategy is then proposed to minimize t
15#
發(fā)表于 2025-3-24 03:33:15 | 只看該作者
16#
發(fā)表于 2025-3-24 09:45:21 | 只看該作者
Harmonic Balance Method for the Stationary Response of Finite and Semi-infinite Nonlinear Dissipatiresponse amplitudes for certain excitation frequencies; the unique frequency-amplitude relationship of system (c) is due to the strong damping (i.e., radiation damping and internal dissipation). Furthermore, although system (b) essentially does not resonate, the third-harmonic component exhibits a m
17#
發(fā)表于 2025-3-24 11:48:33 | 只看該作者
us and it provides detailed knowledge of the state-of-the-art of its treatment.Because of its organization and its extensive subject index, Textbook of Tinnitus can also serve as a reference for clinicians who do not treat tinnitus patients routinely.978-1-4939-3981-7978-1-60761-145-5
18#
發(fā)表于 2025-3-24 18:24:33 | 只看該作者
Expanding the Applicability of the Competitive Modes Conjecture, the mathematical background needed to rigorously apply the Competitive Modes Conjecture to a certain set of non-multipolynomial systems. Afterwards, we provide an example of this new theory in the non-multipolynomial Wimol-Banlue Attractor, something that up?to this point has not been possible as far as the authors know.
19#
發(fā)表于 2025-3-24 21:23:05 | 只看該作者
20#
發(fā)表于 2025-3-25 01:51:10 | 只看該作者
Chaotic Dynamic of a Symmetric Tree-Shaped Wave Network,. We show that when the parameters satisfy certain conditions, the snapback repeller is existence and the system is chaotic. Finally, we give some numerical simulations to illustrate the theoretical outcomes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉水县| 孟津县| 定边县| 沂水县| 五峰| 东方市| 镇雄县| 和平区| 黄梅县| 万宁市| 甘孜| 徐闻县| 锦州市| 塔河县| 灵台县| 兰溪市| 大港区| 绍兴县| 东山县| 元朗区| 始兴县| 女性| 兰州市| 建瓯市| 松阳县| 商南县| 博野县| 南平市| 孙吴县| 南召县| 湘阴县| 浠水县| 饶河县| 沂南县| 万荣县| 宁安市| 泊头市| 大化| 桂东县| 古田县| 南康市|