找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonlinear Differential Equation Models; Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian Conference proceedings 2004 Springer-Verlag Wien

[復(fù)制鏈接]
查看: 6769|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:49:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Nonlinear Differential Equation Models
編輯Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian
視頻videohttp://file.papertrans.cn/668/667388/667388.mp4
概述Cross-section of applied nonlinear analysis
圖書(shū)封面Titlebook: Nonlinear Differential Equation Models;  Ansgar Jüngel,Raul Manasevich,Henrik Shahgholian Conference proceedings 2004 Springer-Verlag Wien
描述The papers in this book originate from lectures which were held at the "Vienna Workshop on Nonlinear Models and Analysis" – May 20–24, 2002.They represent a cross-section of the research field Applied Nonlinear Analysis with emphasis on free boundaries, fully nonlinear partial differential equations, variational methods, quasilinear partial differential equations and nonlinear kinetic models.
出版日期Conference proceedings 2004
關(guān)鍵詞applied nonlinear analysis; nonlinear kinetic models; nonlinear partial differential equations; partial
版次1
doihttps://doi.org/10.1007/978-3-7091-0609-9
isbn_softcover978-3-7091-7208-7
isbn_ebook978-3-7091-0609-9
copyrightSpringer-Verlag Wien 2004
The information of publication is updating

書(shū)目名稱Nonlinear Differential Equation Models影響因子(影響力)




書(shū)目名稱Nonlinear Differential Equation Models影響因子(影響力)學(xué)科排名




書(shū)目名稱Nonlinear Differential Equation Models網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Nonlinear Differential Equation Models網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Nonlinear Differential Equation Models被引頻次




書(shū)目名稱Nonlinear Differential Equation Models被引頻次學(xué)科排名




書(shū)目名稱Nonlinear Differential Equation Models年度引用




書(shū)目名稱Nonlinear Differential Equation Models年度引用學(xué)科排名




書(shū)目名稱Nonlinear Differential Equation Models讀者反饋




書(shū)目名稱Nonlinear Differential Equation Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:46:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:04:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:05 | 只看該作者
Behavior of the Free Boundary Near Contact Points with the Fixed Boundary for Nonlinear Elliptic EqThe aim of this paper is to study a free boundary problem for a uniformly elliptic fully non-linear operator. Under certain assumptions we show that free and fixed boundaries meet tangentially at contact points.
6#
發(fā)表于 2025-3-22 15:02:36 | 只看該作者
Global Solutions of an Obstacle-Problem-Like Equation with Two Phases,Concerning the obstacle-problem-like equation ., where λ.> 0 and λ.> 0, we give a complete characterization of all global two-phase solutions with quadratic growth both at 0 and infinity.
7#
發(fā)表于 2025-3-22 18:56:47 | 只看該作者
On the Blow-Up Set For Ut = (um)xx m> 1, with Nonlinear Boundary Conditions,In this paper we give a complete description of the set of blow up points of solutions of the problem . where m> I.
8#
發(fā)表于 2025-3-23 00:17:01 | 只看該作者
9#
發(fā)表于 2025-3-23 04:27:14 | 只看該作者
978-3-7091-7208-7Springer-Verlag Wien 2004
10#
發(fā)表于 2025-3-23 08:53:31 | 只看該作者
,A Phase Plane Analysis of the “Multi-Bubbling” Phenomenon in Some Slightly Supercritical Equations, .?3 and an equation involving the exponential nonlinearity in dimension .?2. For that purpose, we perform a phase plane analysis which emphasizes the common heuristic properties of the two problems, although more precise estimates can be obtained in some cases by variational methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 15:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙里县| 舞阳县| 织金县| 林口县| 建湖县| 乌兰察布市| 博乐市| 高尔夫| 万源市| 沙河市| 德钦县| 广宗县| 开原市| 青浦区| 永川市| 新平| 泰安市| 孙吴县| 永嘉县| 永川市| 从江县| 湘乡市| 财经| 南安市| 祁东县| 中西区| 治县。| 东辽县| 双鸭山市| 阿合奇县| 玉溪市| 阳泉市| 郯城县| 略阳县| 分宜县| 榆林市| 泸水县| 谢通门县| 陆河县| 福州市| 莱阳市|