找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Nonlinear Analysis, Geometry and Applications; Proceedings of the T Diaraf Seck,Kinvi Kangni,Mouhamed Moustapha Fall Book 2024 The Editor(s

[復(fù)制鏈接]
樓主: negation
61#
發(fā)表于 2025-4-1 02:30:14 | 只看該作者
On the Existence of ,-Einstein Contact Metric Structures, co-oriented contact manifold .. Secondly, we apply this result to obtain important consequences. In particular, we give another proof of a theorem by Boyer and Galicki (Sasakian Geometry. Oxford Mathematical Monographs. Oxford University Press, Oxford (2008). xii+613pp.) on solutions to Goldberg’s
62#
發(fā)表于 2025-4-1 09:54:03 | 只看該作者
Metrics Induced by , on the Graph of ,-Smooth Functions and the Hopf Conjecture,a new proof of a theorem on metrics induced by . on the graph of 1-smooth function. Finally, we show that a metric induced by . on the graph of two smooth functions which are lifts on . does not have a positive sectional curvature.
63#
發(fā)表于 2025-4-1 11:44:04 | 只看該作者
Some Results on Warped Product ,-Ricci-Bourguignon Solitons,on warped product manifold whose potential vector field is conformal must be a quasi-Einstein manifold. As an application, we also study .-Ricci-Bourguignon solitons warped product standard static space-times and generalized Robertson-Walker space-times.
64#
發(fā)表于 2025-4-1 16:42:03 | 只看該作者
65#
發(fā)表于 2025-4-1 22:11:19 | 只看該作者
66#
發(fā)表于 2025-4-2 00:45:10 | 只看該作者
Algebraic Points of Given Degree on the Affine Curve , of Hindry and Silverman who described in Hindry and Silverman (Diophantine Geometry, an Introduction. Graduate Texts in Mathematics. Springer, Berlin, 2000) the set of .-rational points i.e the set of points of degree one over . on this curve.
67#
發(fā)表于 2025-4-2 03:41:28 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 17:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高淳县| 石林| 乐平市| 佛教| 张掖市| 镇沅| 龙川县| 二连浩特市| 张家界市| 清徐县| 霸州市| 芜湖县| 汨罗市| 和硕县| 遵义县| 綦江县| 万荣县| 栾川县| 盱眙县| 始兴县| 辽阳市| 焦作市| 中阳县| 玉屏| 剑川县| 洞口县| 雅江县| 华容县| 新营市| 黔江区| 西城区| 呼伦贝尔市| 湟中县| 高台县| 大姚县| 天门市| 阿拉善右旗| 林口县| 焦作市| 陵川县| 平潭县|