找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncompact Lie Groups and Some of Their Applications; Elizabeth A. Tanner,Raj Wilson Book 1994 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: graphic
31#
發(fā)表于 2025-3-26 21:10:24 | 只看該作者
Generalized Square Integrability and Coherent StatesWe present a method for the construction of coherent states, based on the notion of square integrability of a group representation on a homogeneous space. This generalized formalism allows to cover cases hitherto inaccessible, such as the Poincaré group.
32#
發(fā)表于 2025-3-27 01:28:23 | 只看該作者
Applications of Sp(3,R) in Nuclear PhysicsA brief overview is given of the way the non-compact symplectic group Sp(3,R) is used as a dynamical group in the microscopic theory of nuclear collective motion. Two unfamiliar concepts arise in the theory: the concept of an . and the concept of a .. These concepts are explained and illustrated.
33#
發(fā)表于 2025-3-27 08:50:22 | 只看該作者
Extensions of the Mass 0 Helicity 0 Representation of the Poincare GroupWigner’s “l(fā)ittle group” description of the irreducible representations of the Poincare group associated to the foward light cone is extended to smooth representations of finite length. As an application, we prove that there is a unique indecomposable representation of this group composed of . copies of the mass 0 helicity 0 representation.
34#
發(fā)表于 2025-3-27 09:28:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:37:01 | 只看該作者
36#
發(fā)表于 2025-3-27 20:30:35 | 只看該作者
Nato Science Series C:http://image.papertrans.cn/n/image/667206.jpg
37#
發(fā)表于 2025-3-28 01:29:47 | 只看該作者
38#
發(fā)表于 2025-3-28 04:16:40 | 只看該作者
Harish-Chandra’s c-Function. A Mathematical Jewelin meromorphic function c. While he showed that this function determines the Plancherel measure for the spherical transform on . it has later turned out that this c-function plays many other roles in the representation theory of . and in analysis on various homogeneous spaces of .; see particularly Theorems 6.1, 8.1, and 9.1.
39#
發(fā)表于 2025-3-28 10:20:51 | 只看該作者
40#
發(fā)表于 2025-3-28 13:00:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
晋州市| 安阳县| 怀宁县| 青阳县| 安龙县| 涟源市| 赫章县| 武平县| 同江市| 北宁市| 泰顺县| 崇信县| 呼玛县| 河源市| 大厂| 永州市| 乡宁县| 城固县| 哈尔滨市| 汤原县| 安丘市| 广宗县| 保康县| 洛南县| 喀喇沁旗| 天峻县| 卫辉市| 红河县| 普洱| 万年县| 且末县| 灵璧县| 扶沟县| 永福县| 观塘区| 张家港市| 泾源县| 东台市| 龙山县| 精河县| 荔波县|