找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Noncommutative Algebraic Geometry and Representations of Quantized Algebras; Alexander L. Rosenberg Book 1995 Springer Science+Business Me

[復(fù)制鏈接]
樓主: 海市蜃樓
11#
發(fā)表于 2025-3-23 09:42:24 | 只看該作者
12#
發(fā)表于 2025-3-23 14:24:04 | 只看該作者
Noncommutative Local Algebra, to be excellent in commutative and graded-commutative geometries. But even the simplest non-affine spaces that come into view in the non(graded)commutative case — analogs of quasi-affine schemes and projective spectra — very rarely can be covered with open affine subschemes.
13#
發(fā)表于 2025-3-23 21:37:59 | 只看該作者
Skew PBW monads and representations,. A skew PBW (Poincaré-Birkhoff-Witt) ring related to the map . is an associative ring .{.} which contains . as a subring and is a free right .-module with a basis {.. | . ∈ G} such that .. = ..(.).. for any . ∈ G and all . ∈ .. The symbol . stays for the multiplication table: .... = Σ... (. | .). W
14#
發(fā)表于 2025-3-24 00:48:37 | 只看該作者
15#
發(fā)表于 2025-3-24 03:54:39 | 只看該作者
16#
發(fā)表于 2025-3-24 07:52:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:50:52 | 只看該作者
mples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern 978-90-481-4577-5978-94-015-8430-2
18#
發(fā)表于 2025-3-24 18:31:11 | 只看該作者
Noncommutative Algebraic Geometry and Representations of Quantized Algebras
19#
發(fā)表于 2025-3-24 20:49:16 | 只看該作者
20#
發(fā)表于 2025-3-25 00:17:08 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
光山县| 龙口市| 施甸县| 明光市| 安阳市| 阜新市| 吉安县| 黑河市| 南宫市| 永昌县| 绿春县| 西丰县| 蕉岭县| 温泉县| 防城港市| 调兵山市| 德州市| 阿城市| 岳普湖县| 普格县| 河津市| 蒲城县| 连南| 新乡市| 马关县| 巴塘县| 虎林市| 荥经县| 平泉县| 十堰市| 米易县| 房产| 邢台市| 资阳市| 孟州市| 蓬安县| 且末县| 二连浩特市| 闽清县| 桑植县| 焉耆|