找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Nonarchimedean and Tropical Geometry; Matthew Baker,Sam Payne Conference proceedings 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: 誤解
11#
發(fā)表于 2025-3-23 10:26:06 | 只看該作者
Berkovich Skeleta and Birational Geometry,nt series and the birational geometry of one-parameter degenerations of smooth projective varieties. The central objects in our theory are the . and the . of the degeneration. We tried to keep the text self-contained, so that it can serve as an introduction to Berkovich geometry for birational geometers.
12#
發(fā)表于 2025-3-23 15:09:27 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:41 | 只看該作者
Forms and Currents on the Analytification of an Algebraic Variety (After Chambert-Loir and Ducros),Chambert-Loir and Ducros have recently introduced real differential forms and currents on Berkovich spaces. In these notes, we survey this new theory and we will compare it with tropical algebraic geometry.
14#
發(fā)表于 2025-3-23 23:00:10 | 只看該作者
15#
發(fā)表于 2025-3-24 06:09:28 | 只看該作者
Degeneration of Linear Series from the Tropical Point of View and Applications,We discuss linear series on tropical curves and their relation to classical algebraic geometry, describe the main techniques of the subject, and survey some of the recent major developments in the field, with an emphasis on applications to problems in Brill–Noether theory and arithmetic geometry.
16#
發(fā)表于 2025-3-24 08:37:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:00:57 | 只看該作者
https://doi.org/10.1007/978-3-319-30945-3Tropical Geometry; Nonarchimedean Analysis; algebraic geometry; Berkovich Spaces; Hodge Theory; Huber The
18#
發(fā)表于 2025-3-24 17:36:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:27:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:12:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莒南县| 拉萨市| 南充市| 秦皇岛市| 九江县| 大理市| 新竹市| 宿州市| 岚皋县| 墨竹工卡县| 舞钢市| 望江县| 礼泉县| 深州市| 福泉市| 平和县| 华蓥市| 乳山市| 武清区| 东阳市| 南溪县| 内江市| 依安县| 怀集县| 梨树县| 河南省| 竹北市| 宜川县| 盈江县| 津市市| 喀喇| 扎兰屯市| 施秉县| 余姚市| 胶南市| 龙口市| 建湖县| 兴山县| 青神县| 来凤县| 三原县|