找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-self-adjoint Schr?dinger Operator with a Periodic Potential; Oktay Veliev Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: Kennedy
21#
發(fā)表于 2025-3-25 03:35:08 | 只看該作者
,Spectral Theory for the Schr?dinger Operator with a Complex-Valued Periodic Potential,ed potential . by introducing new concepts and approaches. First, in the introduction section, we introduce the required notations and discuss the results of this chapter. Then, in Sect. ., we study the Floquet solutions of the equation . and consider the general property of the spectrum of .(.). In
22#
發(fā)表于 2025-3-25 10:55:38 | 只看該作者
On the Special Potentials,stigate the operator .(.) with complex-valued even potential . and prove that it may has at most finite number of ESS. In Sect.?., we investigate the spectrum and spectral singularities of the operator .(.) with a periodic PT-symmetric complex-valued potential . . A basic mathematical question of PT
23#
發(fā)表于 2025-3-25 12:59:35 | 只看該作者
,On the Mathieu-Schr?dinger Operator,st, we investigate the asymptotic formulas for the isolated Bloch eigenvalues and find a condition for the isospectrality. Then we consider the asymptotic formulas for the pair of the Bloch eigenvalues and find a necessary and sufficient condition on the potential for which . has no spectral singula
24#
發(fā)表于 2025-3-25 18:20:55 | 只看該作者
25#
發(fā)表于 2025-3-25 20:45:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:45:31 | 只看該作者
27#
發(fā)表于 2025-3-26 04:32:37 | 只看該作者
Oktay Veliev text. This translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature.
28#
發(fā)表于 2025-3-26 11:22:45 | 只看該作者
Oktay Velievs translation of the second German edition has been prepared to facilitate the use of this work, with all its valuable detail, by the large community of English-speaking scientists. Translation has also provided an opportunity to correct and revise the text, and to update the nomenclature. Fortunate
29#
發(fā)表于 2025-3-26 16:19:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:26:19 | 只看該作者
https://doi.org/10.1057/9780230250833rschu? von Si0. [die Anwesenheit von Quarz trifft für sehr viele Metamorphite zu] k?nnen immer nur die Minerale mit dem h?chstm?glichen SiO.-Gehalt entstehen; die Menge des SiO. übt folglich keinen Einflu? auf die Art des Mineralbestandes mehr aus und braucht nicht in das Diagramm einzugehen. In ein
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 15:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
上思县| 留坝县| 盐池县| 泗水县| 石屏县| 峨山| 上栗县| 长垣县| 兴业县| 庆阳市| 包头市| 郁南县| 贺州市| 松潘县| 凤山县| 四会市| 麻城市| 定南县| 厦门市| 宿松县| 榆树市| 南投县| 琼结县| 双桥区| 奈曼旗| 杂多县| 大同县| 建湖县| 汪清县| 乌鲁木齐市| 峨边| 桂平市| 怀来县| 前郭尔| 开阳县| 石林| 修水县| 昌吉市| 贡觉县| 增城市| 金山区|