找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-metrisable Manifolds; David Gauld Book 2014 Springer Science+Business Media Singapore 2014 Bagpipe Theorem.Brown’s Monotone Union Theo

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:37:09 | 只看該作者
22#
發(fā)表于 2025-3-25 08:36:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:32 | 只看該作者
d for other applications. Parameters for nuclear levels of stable nuclei have been published in the Volumes I/16B, I/18A, B, C, and in I/19A1, A2. In the Volumes I/19A, B further data obtained from transfer reactions are presented. Volume I/19C contains the data of unstable nuclei far from the stabi
24#
發(fā)表于 2025-3-25 16:25:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:16 | 只看該作者
David Gauld tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of t
26#
發(fā)表于 2025-3-26 03:53:02 | 只看該作者
27#
發(fā)表于 2025-3-26 07:49:35 | 只看該作者
28#
發(fā)表于 2025-3-26 11:14:23 | 只看該作者
29#
發(fā)表于 2025-3-26 16:27:53 | 只看該作者
Type I Manifolds and the Bagpipe Theorem,f Type I and is countably compact. Nyikos then went on to prove his amazing Bagpipe Theorem which describes the structure of .-bounded surfaces. We present a proof of Nyikos’s Bagpipe Theorem. We also show that there are . many .-bounded, connected surfaces: contrast this with the compact, connected surfaces of which there are only . many.
30#
發(fā)表于 2025-3-26 18:20:35 | 只看該作者
,Homeomorphisms and Dynamics on?Non-metrisable Manifolds,ly to powers of the long line where we find the situation to be significantly different from the situation for powers of the real line: points where at least two coordinates agree combine to form barriers to the behaviour of homeomorphisms. We also display a surface whose group of homeomorphisms modulo isotopy is isomorphic to ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长乐市| 彭山县| 贵港市| 丰城市| 金沙县| 吴堡县| 樟树市| 玉屏| 石台县| 理塘县| 义乌市| 金昌市| 宜都市| 陵川县| 河北区| 广宁县| 滁州市| 东光县| 电白县| 柳江县| 江城| 临邑县| 长沙市| 邯郸县| 汝城县| 科尔| 临泽县| 客服| 义乌市| 临安市| 福泉市| 和平区| 武穴市| 合川市| 昌黎县| 北流市| 安义县| 达州市| 伊吾县| 卓尼县| 怀柔区|