找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Oscillation Domains of Differential Equations with Two Parameters; Angelo B. Mingarelli,S. Gotskalk Halvorsen Book 1988 Springer-Verla

[復(fù)制鏈接]
查看: 46176|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:07:13 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters
編輯Angelo B. Mingarelli,S. Gotskalk Halvorsen
視頻videohttp://file.papertrans.cn/667/666993/666993.mp4
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Non-Oscillation Domains of Differential Equations with Two Parameters;  Angelo B. Mingarelli,S. Gotskalk Halvorsen Book 1988 Springer-Verla
描述This research monograph is an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill‘s equation or Mathieu‘s equation. For the most part no periodicity assumptions are used and when such are made, more general notions such as almost periodic functions are introduced, extending many classical and introducing many new results. Many of the proofs in the first part are variational thus allowing for natural extensions to more general settings later. The book should be accessible to graduate students and researchers alike and the proofs are, for the most part, self-contained.
出版日期Book 1988
關(guān)鍵詞difference equation; differential equation; integral; integral equation; ordinary differential equation
版次1
doihttps://doi.org/10.1007/BFb0080637
isbn_softcover978-3-540-50078-0
isbn_ebook978-3-540-45918-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1988
The information of publication is updating

書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters影響因子(影響力)




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters影響因子(影響力)學(xué)科排名




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters被引頻次




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters被引頻次學(xué)科排名




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters年度引用




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters年度引用學(xué)科排名




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters讀者反饋




書(shū)目名稱Non-Oscillation Domains of Differential Equations with Two Parameters讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:20:10 | 只看該作者
Non-Oscillation Domains of Differential Equations with Two Parameters978-3-540-45918-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
板凳
發(fā)表于 2025-3-22 00:37:38 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/n/image/666993.jpg
地板
發(fā)表于 2025-3-22 06:35:00 | 只看該作者
https://doi.org/10.1007/BFb0080637difference equation; differential equation; integral; integral equation; ordinary differential equation
5#
發(fā)表于 2025-3-22 10:14:18 | 只看該作者
6#
發(fā)表于 2025-3-22 16:34:50 | 只看該作者
7#
發(fā)表于 2025-3-22 17:54:31 | 只看該作者
8#
發(fā)表于 2025-3-22 23:29:05 | 只看該作者
0075-8434 e equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill‘s equation or Mathieu‘s equation. For the most part no periodicity assumptions are used and when such
9#
發(fā)表于 2025-3-23 01:56:03 | 只看該作者
10#
發(fā)表于 2025-3-23 06:33:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸溪县| 阳山县| 阳信县| 宝坻区| 张家口市| 衢州市| 石棉县| 长白| 呼图壁县| 兰溪市| 石台县| 崇礼县| 鹿泉市| 昭通市| 汕头市| 中超| 原阳县| 鄂温| 六盘水市| 鄂托克旗| 游戏| 兴业县| 河东区| 长宁县| 新源县| 德化县| 安新县| 名山县| 蓝山县| 西和县| 闽清县| 霍山县| 彭山县| 巴楚县| 岢岚县| 定陶县| 连云港市| 涪陵区| 峨眉山市| 泾川县| 宜丰县|