找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in the Applications of Differential Equations in Sciences; NTADES 2023, Saints Angela Slavova Conference proceedings 2024 The E

[復(fù)制鏈接]
樓主: 嬉戲
41#
發(fā)表于 2025-3-28 17:22:23 | 只看該作者
Graphical Portraits of?the?Solutions of?Binary First Order Nonlinear Ordinary Differential Equation fficients near the critical (singular) point (0,?0) . The normal forms (A. Davydov, then T. Fukui) depend on a real parameter . and can be semicubic parabola, folded saddle point, folded node and folded focus. The corresponding graphical portraits in the plane are proposed in Theorem 2 and are illus
42#
發(fā)表于 2025-3-28 21:55:38 | 只看該作者
43#
發(fā)表于 2025-3-29 00:53:55 | 只看該作者
44#
發(fā)表于 2025-3-29 07:02:40 | 只看該作者
45#
發(fā)表于 2025-3-29 09:03:05 | 只看該作者
46#
發(fā)表于 2025-3-29 13:24:48 | 只看該作者
47#
發(fā)表于 2025-3-29 17:16:03 | 只看該作者
48#
發(fā)表于 2025-3-29 22:56:57 | 只看該作者
Definite/Indefinite Integrals Involving Non-integral Powers for Certain Trigonometric Functions Timeases are constructed through power series. Especially cases given by a trigonometric function are decomposed into smaller than or equal to components. Hypergeometric functions, Pochhammer functions, Gamma functions involved are easy to avoid overflow in numerical computation.
49#
發(fā)表于 2025-3-30 00:14:06 | 只看該作者
50#
發(fā)表于 2025-3-30 07:22:50 | 只看該作者
Area and Perimeter Full Distribution Functions for Planar Poisson Line Processes and Voronoi Diagramalculated moments of areas and perimeters of any order (including expectation) of the random division of space in 1972. In the paper we calculate whole distribution function of random divisions of plane by Poisson line process. Our idea is to interpret a random polygon as the evolution of a segment
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
方正县| 渭南市| 双江| 东阳市| 甘肃省| 沙洋县| 雷波县| 昌宁县| 梨树县| 蒙阴县| 台中市| 伊金霍洛旗| 武川县| 印江| 柳江县| 凌源市| 焦作市| 金川县| 璧山县| 凤阳县| 无极县| 当雄县| 肇东市| 阳信县| 泉州市| 赣榆县| 林州市| 正宁县| 洮南市| 梨树县| 湾仔区| 宜城市| 庐江县| 刚察县| 吉水县| 黔西县| 泰来县| 平阳县| 澜沧| 巴彦淖尔市| 泸水县|