找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Parameter Identification for Mathematical Models; Bernd Hofmann,Antonio Leit?o,Jorge P. Zubelli Book 2018 Springer Internati

[復(fù)制鏈接]
樓主: 征募
41#
發(fā)表于 2025-3-28 15:42:19 | 只看該作者
42#
發(fā)表于 2025-3-28 20:42:33 | 只看該作者
43#
發(fā)表于 2025-3-29 01:15:12 | 只看該作者
44#
發(fā)表于 2025-3-29 03:18:19 | 只看該作者
On Nonstationary Iterated Tikhonov Methods for Ill-Posed Equations in Banach Spaces,y, the Lagrange multipliers) for the nIT iteration, aiming to obtain a fast decay of the residual..Numerical experiments are presented for a 1D convolution problem (smooth Tikhonov functional and Banach parameter-space), and for a 2D deblurring problem (nonsmooth Tikhonov functional and Hilbert parameter-space).
45#
發(fā)表于 2025-3-29 10:11:44 | 只看該作者
46#
發(fā)表于 2025-3-29 13:32:29 | 只看該作者
47#
發(fā)表于 2025-3-29 15:34:31 | 只看該作者
Modification of Iterative Tikhonov Regularization Motivated by a Problem of Identification of Laser initial problem to that of finding an approximation of the function in a class of functions whose minimum can easily be calculated. The presented method is motivated by a problem of identification of laser beam quality parameters, however the scope of its applicability is quite general.
48#
發(fā)表于 2025-3-29 23:22:22 | 只看該作者
49#
發(fā)表于 2025-3-29 23:57:13 | 只看該作者
50#
發(fā)表于 2025-3-30 05:26:20 | 只看該作者
On Self-regularization of Ill-Posed Problems in Banach Spaces by Projection Methods,the dimension of subspaces as the regularization parameter. Convergence conditions are also given for the choice of the dimension by the discrepancy principle, without the requirement that the projection operators are uniformly bounded.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德化县| 宾川县| 清流县| 吴忠市| 桃园市| 本溪| 永昌县| 定日县| 德昌县| 益阳市| 南澳县| 西林县| 邓州市| 宝清县| 城市| 塔城市| 灵武市| 信宜市| 鄄城县| 长治县| 重庆市| 九江县| 榆中县| 牡丹江市| 九台市| 雅安市| 莎车县| 清流县| 丹江口市| 白山市| 广汉市| 彭阳县| 元江| 兰西县| 长沙县| 凤山县| 广南县| 司法| 望奎县| 于都县| 双峰县|