找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Database and Information Systems; ADBIS 2022 Short Pap Silvia Chiusano,Tania Cerquitelli,Ester Zumpano Conference proceedings

[復(fù)制鏈接]
樓主: 不能平庸
41#
發(fā)表于 2025-3-28 17:35:21 | 只看該作者
Jero Sch?fer,Lena Wieseformations of .(.). If .(.) = .(. + 1)/2, then .(.) is a polynomial ring ?[.., . . ., ..] and the vector fields ., . = 1, . . ., .(. ? 1), span a commutative Lie algebra of dimension .(. ? 1). Let . be a corresponding simply-connected Lie group so that . ? ?.. Then . operates on .(.) by an action .
42#
發(fā)表于 2025-3-28 22:18:32 | 只看該作者
43#
發(fā)表于 2025-3-28 23:52:46 | 只看該作者
Rahul Sharma,Minakshi Kaushik,Sijo Arakkal Peious,Markus Bertl,Ankit Vidyarthi,Ashwani Kumar,Dirk Drformations of .(.). If .(.) = .(. + 1)/2, then .(.) is a polynomial ring ?[.., . . ., ..] and the vector fields ., . = 1, . . ., .(. ? 1), span a commutative Lie algebra of dimension .(. ? 1). Let . be a corresponding simply-connected Lie group so that . ? ?.. Then . operates on .(.) by an action .
44#
發(fā)表于 2025-3-29 06:01:55 | 只看該作者
the (instanton part of the) . (for . = .(.)). The prepotential is defined using the geometry of the (classical) periodic Toda integrable system. This result was conjectured in tikya[7]..The purpose of this paper is to extend these results to arbitrary .. Namely, we use the above description of the f
45#
發(fā)表于 2025-3-29 10:57:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:58:31 | 只看該作者
Tanja Auge,Moritz Hanzig,Andreas Heuernor elusive. Indeed it is particularly those nouns that refer to vague, abstract and ill-defined notions that, out of sheer convenience, commend themselves most in fashionable jargon. Jargon-words provide a handy and often unnoticed way of avoiding or concealing the need for precise definition.
47#
發(fā)表于 2025-3-29 15:32:43 | 只看該作者
Alberto Berenguer,Jose-Norberto Mazón,David Tomásand phYSicists and the publication of the studies collected in this Volume are based on lec- tures presented at the NATO Advanced Study Institute on Mathemati- cal Physics held in Istanbul in August 1970. They contain review papers and didactic material as well as original results. Some of the studi
48#
發(fā)表于 2025-3-29 23:04:17 | 只看該作者
49#
發(fā)表于 2025-3-30 00:24:43 | 只看該作者
50#
發(fā)表于 2025-3-30 05:34:01 | 只看該作者
t of commerce pulsed were Hamburg and Bremen in the West and Danzig and Stettin along the shores of the Baltic in the East: three-quarters of German commerce was traded via sea ports. Na?ve pride soon gave way to increasing concern: on the continent Germany was splendidly supported and protected by
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
慈溪市| 吉安市| 光泽县| 永仁县| 汨罗市| 台中县| 利津县| 龙海市| 临江市| 武功县| 海淀区| 丹寨县| 开化县| 吉林省| 秦皇岛市| 改则县| 张家港市| 化隆| 阿图什市| 福泉市| 伊金霍洛旗| 凤城市| 忻城县| 吉木萨尔县| 闵行区| 简阳市| 张北县| 麻城市| 昌宁县| 高雄县| 台中市| 林口县| 东莞市| 边坝县| 资中县| 广河县| 察哈| 张北县| 芦溪县| 洪泽县| 奉节县|