找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Trends in Approximation Theory; In Memory of André B Javad Mashreghi,Myrto Manolaki,Paul Gauthier Book 2018 Springer Science+Business M

[復制鏈接]
樓主: Impacted
11#
發(fā)表于 2025-3-23 10:25:31 | 只看該作者
Approximation by Solutions of Elliptic Equations and Extension of Subharmonic Functions,In this review we present the main results jointly obtained by the authors and André Boivin (1955–2014) during the last 20 years. We also recall some important theorems obtained with colleagues and give new applications of the above mentioned results. Several open problems are also formulated.
12#
發(fā)表于 2025-3-23 15:47:25 | 只看該作者
Chebyshev Polynomials Associated with a System of Continua,We establish estimates from above for the uniform norm of the Chebyshev polynomials associated with a system of continua . by constructing monic polynomials with small norms on .. The estimates are exact (up to a constant factor) in the case where . has a piecewise quasiconformal boundary and its complement . has no outward pointing cusps.
13#
發(fā)表于 2025-3-23 21:25:01 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:51 | 只看該作者
15#
發(fā)表于 2025-3-24 03:36:14 | 只看該作者
16#
發(fā)表于 2025-3-24 09:02:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:45 | 只看該作者
18#
發(fā)表于 2025-3-24 16:09:31 | 只看該作者
19#
發(fā)表于 2025-3-24 22:23:27 | 只看該作者
Taylor Series, Universality and Potential Theory,ial theory has played in such investigations. It also briefly discusses potential theoretic aspects of universal Laurent series, universal Dirichlet series, and universal polynomial expansions of harmonic functions.
20#
發(fā)表于 2025-3-25 01:49:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 11:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汾西县| 和政县| 黎城县| 兰溪市| 荃湾区| 阿瓦提县| 盐源县| 资溪县| 林甸县| 英山县| 银川市| 内黄县| 嵊泗县| 仁布县| 济源市| 延寿县| 天全县| 新巴尔虎左旗| 湖北省| 丘北县| 凤山县| 乐安县| 龙里县| 余姚市| 靖远县| 阳江市| 扎赉特旗| 兴国县| 长葛市| 海门市| 合山市| 盐亭县| 吴桥县| 顺昌县| 阜阳市| 衡南县| 福贡县| 库尔勒市| 曲沃县| 房山区| 嘉黎县|