找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Theory of Discriminant Analysis After R. Fisher; Advanced Research by Shuichi Shinmura Book 2016 Springer Science+Business Media Singap

[復(fù)制鏈接]
樓主: 稀少
11#
發(fā)表于 2025-3-23 13:06:02 | 只看該作者
12#
發(fā)表于 2025-3-23 15:11:30 | 只看該作者
Matroska Feature-Selection Method for Microarray Dataset (Method 2),. The Method 1 offers a 95?% CI for the error rate and coefficient. We obtained two means of the error rates, M1 and M2, in the training and validation samples and proposed a simple model selection procedure to choose the best model with a minimum M2. We compared two statistical LDFs and six MP-base
13#
發(fā)表于 2025-3-23 21:07:09 | 只看該作者
14#
發(fā)表于 2025-3-23 23:55:22 | 只看該作者
Book 2016d discriminate LSD theoretically (Problem 2). We solved the defect of the generalized inverse matrices (Problem 3)..For more than 10 years, many researchers have struggled to analyze the microarray dataset that is LSD (Problem 5). If we call the linearly separable model "Matroska," the dataset consi
15#
發(fā)表于 2025-3-24 06:02:10 | 只看該作者
16#
發(fā)表于 2025-3-24 06:41:56 | 只看該作者
New Theory of Discriminant Analysis After R. Fisher978-981-10-2164-0
17#
發(fā)表于 2025-3-24 14:16:20 | 只看該作者
New Theory of Discriminant Analysis,ely solve these problems through five mathematical programming-based linear discriminant functions (MP-based LDFs). First, I develop an optimal linear discriminant function using integer programming (IP-OLDF) based on a minimum number of misclassifications (minimum NM (MNM)) criterion. We consider d
18#
發(fā)表于 2025-3-24 16:51:31 | 只看該作者
,Iris Data and Fisher’s Assumption,s. Because Fisher evaluates Fisher’s LDF with these data, such data are very popular for the evaluation of discriminant functions. Therefore, we call these data, “Fisher’s Iris data.” Because we can easily separate setosa from virginica and vercicolor through a scatter plot, we usually discriminate
19#
發(fā)表于 2025-3-24 20:00:42 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 23:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太湖县| 漾濞| 黔南| 嘉兴市| 辰溪县| 丰宁| 昌黎县| 启东市| 冀州市| 长垣县| 通榆县| 思茅市| 安陆市| 河津市| 双流县| 昌平区| 沂南县| 宜君县| 佳木斯市| 南投市| 临清市| 小金县| 化隆| 扎兰屯市| 昌平区| 安义县| 洛川县| 德惠市| 长沙市| 香格里拉县| 额敏县| 三门县| 灌阳县| 马龙县| 昭通市| 贵港市| 确山县| 枣阳市| 台前县| 获嘉县| 溧阳市|