找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Horizons in pro-p Groups; Marcus Sautoy,Dan Segal,Aner Shalev Book 2000 Springer Science+Business Media New York 2000 Finite.Group the

[復(fù)制鏈接]
樓主: 祈求
21#
發(fā)表于 2025-3-25 05:37:15 | 只看該作者
Subgroup Growth in pro-, Groups,y generated, either as an abstract or as a profinite group, then ... finite. The study of the series ..., a subject that is known as .,was begun by Hurwitz in the 19th century, with geometric motivation, and has become an active area of research in recent years. Let us mention, e.g., that a pro-. Gr
22#
發(fā)表于 2025-3-25 08:55:18 | 只看該作者
Zeta Functions of Groups,re an uncannily powerful tool in number theory; to mention just some celebrated examples, they are at the heart of the proofs of the Prime Number Theorem, Dirichlet’s theorem on primes in arithmetic progressions, and the main theorems (in their original form) of class field theory, not to mention th
23#
發(fā)表于 2025-3-25 12:04:24 | 只看該作者
,-adic Galois Representations and pro-, Galois Groups,ation passes in both directions. Algebraic geometry, for instance in the guise of elliptic curves and modular forms, yields naturally occurring Galois representations, whereas on the other side, co-homological techniques and variants on class field theory tell us about the generators and relations o
24#
發(fā)表于 2025-3-25 17:59:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:45:49 | 只看該作者
26#
發(fā)表于 2025-3-26 01:19:32 | 只看該作者
27#
發(fā)表于 2025-3-26 06:27:31 | 只看該作者
Book 2000 must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.
28#
發(fā)表于 2025-3-26 10:37:58 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:39 | 只看該作者
0743-1643 written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.978-1-4612-7122-2978-1-4612-1380-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
30#
發(fā)表于 2025-3-26 17:14:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屏东市| 长垣县| 清水河县| 长宁区| 汨罗市| 德钦县| 伊宁县| 宣汉县| 芦山县| 昭觉县| 新乡县| 甘南县| 广安市| 农安县| 岐山县| 长汀县| 巢湖市| 鄄城县| 宜章县| 阿巴嘎旗| 无棣县| 砀山县| 绥江县| 民县| 涪陵区| 余江县| 凉山| 梅州市| 余姚市| 汝城县| 临夏市| 云和县| 碌曲县| 阿尔山市| 北川| 通城县| 深州市| 阿合奇县| 上林县| 五常市| 克东县|