找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers of Biostatistics and Bioinformatics; Yichuan Zhao,Ding-Geng Chen Book 2018 Springer Nature Switzerland AG 2018 Biostatistica

[復(fù)制鏈接]
樓主: PEL
31#
發(fā)表于 2025-3-26 21:54:56 | 只看該作者
A. Ring,M. Scharpenberg,S. Grill,R. Schall,W. Brannathlt is obtained by applying a refined version of the main algorithm suggested by Fraigniaud, Korman and Rodeh in STOC’16, which was designed for the context of linear parallel search..We then describe an optimal non-coordinating algorithm for the case where the distribution . is known. The running ti
32#
發(fā)表于 2025-3-27 05:09:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:41:04 | 只看該作者
34#
發(fā)表于 2025-3-27 13:04:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:35:10 | 只看該作者
Lian Li,Yichuan Zhaolt is obtained by applying a refined version of the main algorithm suggested by Fraigniaud, Korman and Rodeh in STOC’16, which was designed for the context of linear parallel search..We then describe an optimal non-coordinating algorithm for the case where the distribution . is known. The running ti
36#
發(fā)表于 2025-3-27 19:17:52 | 只看該作者
37#
發(fā)表于 2025-3-27 23:21:38 | 只看該作者
Bochao Jia,Faming Liangon . of input vertices satisfies .) our bounds give constant factor approximations, improving the previous logarithmic approximation factors. For those DAGs, by avoiding certain I/O-inefficiencies, which we will define precisely, a pebbling strategy is guaranteed to satisfy those bounds and asymptot
38#
發(fā)表于 2025-3-28 02:09:50 | 只看該作者
39#
發(fā)表于 2025-3-28 07:36:57 | 只看該作者
40#
發(fā)表于 2025-3-28 14:28:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 县级市| 梓潼县| 镇赉县| 胶南市| 射洪县| 松滋市| 饶平县| 和平区| 武邑县| 黄大仙区| 思茅市| 广丰县| 岳阳县| 乐都县| 济南市| 南丹县| 关岭| 无为县| 靖远县| 武宁县| 昭苏县| 封丘县| 华蓥市| 贡嘎县| 彩票| 淮安市| 成都市| 余庆县| 改则县| 辽中县| 衡东县| 龙里县| 眉山市| 鹤峰县| 竹溪县| 建宁县| 咸宁市| 南召县| 南安市| 连江县|