找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Quantitative Methods in Informatics; 7th Workshop, InfQ 2 Simonetta Balsamo,Andrea Marin,Enrico Vicario Conference proceed

[復(fù)制鏈接]
查看: 34754|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:40:42 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱New Frontiers in Quantitative Methods in Informatics
副標(biāo)題7th Workshop, InfQ 2
編輯Simonetta Balsamo,Andrea Marin,Enrico Vicario
視頻videohttp://file.papertrans.cn/666/665296/665296.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: New Frontiers in Quantitative Methods in Informatics; 7th Workshop, InfQ 2 Simonetta Balsamo,Andrea Marin,Enrico Vicario Conference proceed
描述This book constitutes the refereed proceedings of the 7th Workshop on New Frontiers in Quantitative Methods in Informatics, InfQ 2017, held in Venice, Italy, in December 2017..The 11 revised full papers and the one revised short paper presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on?networking and mobile applications;?applications of quantitative modeling;?big data processing and IoT;?theory, methods and tools for quantitative analysis.
出版日期Conference proceedings 2018
關(guān)鍵詞cloud computing; formal methods; graph theory; Markov chains; model checking; optimization; performance ev
版次1
doihttps://doi.org/10.1007/978-3-319-91632-3
isbn_softcover978-3-319-91631-6
isbn_ebook978-3-319-91632-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱New Frontiers in Quantitative Methods in Informatics影響因子(影響力)




書目名稱New Frontiers in Quantitative Methods in Informatics影響因子(影響力)學(xué)科排名




書目名稱New Frontiers in Quantitative Methods in Informatics網(wǎng)絡(luò)公開度




書目名稱New Frontiers in Quantitative Methods in Informatics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱New Frontiers in Quantitative Methods in Informatics被引頻次




書目名稱New Frontiers in Quantitative Methods in Informatics被引頻次學(xué)科排名




書目名稱New Frontiers in Quantitative Methods in Informatics年度引用




書目名稱New Frontiers in Quantitative Methods in Informatics年度引用學(xué)科排名




書目名稱New Frontiers in Quantitative Methods in Informatics讀者反饋




書目名稱New Frontiers in Quantitative Methods in Informatics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:19:51 | 只看該作者
Vs-Driven Big Data Process Developmenttime. To do so, the approach relies on annotating Big Data process workflows (and their individual elements) with relevant V-attribute values, which are then mapped into resource requirements and used in a performance model.
板凳
發(fā)表于 2025-3-22 01:26:01 | 只看該作者
地板
發(fā)表于 2025-3-22 07:52:21 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:43 | 只看該作者
6#
發(fā)表于 2025-3-22 13:49:55 | 只看該作者
Conference proceedings 2018s. The papers are organized in topical sections on?networking and mobile applications;?applications of quantitative modeling;?big data processing and IoT;?theory, methods and tools for quantitative analysis.
7#
發(fā)表于 2025-3-22 18:06:24 | 只看該作者
1865-0929 submissions. The papers are organized in topical sections on?networking and mobile applications;?applications of quantitative modeling;?big data processing and IoT;?theory, methods and tools for quantitative analysis.978-3-319-91631-6978-3-319-91632-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
8#
發(fā)表于 2025-3-22 22:26:02 | 只看該作者
Conference proceedings 2018 Italy, in December 2017..The 11 revised full papers and the one revised short paper presented were carefully reviewed and selected from 22 submissions. The papers are organized in topical sections on?networking and mobile applications;?applications of quantitative modeling;?big data processing and
9#
發(fā)表于 2025-3-23 03:52:18 | 只看該作者
Auto-Scaling in Data Stream Processing Applications: A Model-Based Reinforcement Learning Approachopose two model-based approaches and compare them to the baseline Q-learning algorithm. Our numerical investigations show that the proposed solutions provide better performance and faster convergence than the baseline.
10#
發(fā)表于 2025-3-23 05:52:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸市| 公主岭市| 台湾省| 乌审旗| 静安区| 华池县| 南木林县| 佛山市| 石景山区| 陵川县| 靖边县| 济阳县| 鱼台县| 乡宁县| 称多县| 蓬安县| 嘉定区| 新余市| 镇沅| 内江市| 东乌珠穆沁旗| 三门峡市| 黄大仙区| 洮南市| 紫阳县| 裕民县| 宿州市| 塔城市| 株洲县| 西安市| 冕宁县| 台北县| 墨竹工卡县| 略阳县| 安福县| 济南市| 宜阳县| 工布江达县| 深水埗区| 开江县| 探索|