找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Frontiers in Mining Complex Patterns; Second International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201

[復(fù)制鏈接]
查看: 16802|回復(fù): 54
樓主
發(fā)表于 2025-3-21 19:13:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns
副標(biāo)題Second International
編輯Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras
視頻videohttp://file.papertrans.cn/666/665284/665284.mp4
概述Includes supplementary material:
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: New Frontiers in Mining Complex Patterns; Second International Annalisa Appice,Michelangelo Ceci,Zbigniew W. Ras Conference proceedings 201
描述This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2013, held in conjunction with ECML/PKDD 2013 in Prague, Czech Republic, in September 2013. The 16 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, clustering and pattern discovery, graphs, networks and relational data, machine learning and music data.
出版日期Conference proceedings 2014
關(guān)鍵詞classification; clustering; data mining; data mining; feature selection; feature selection; machine learni
版次1
doihttps://doi.org/10.1007/978-3-319-08407-7
isbn_softcover978-3-319-08406-0
isbn_ebook978-3-319-08407-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns影響因子(影響力)




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns被引頻次




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns被引頻次學(xué)科排名




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns年度引用




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns年度引用學(xué)科排名




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns讀者反饋




書(shū)目名稱(chēng)New Frontiers in Mining Complex Patterns讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:29 | 只看該作者
Conference proceedings 2014erns, NFMCP 2013, held in conjunction with ECML/PKDD 2013 in Prague, Czech Republic, in September 2013. The 16 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, cl
板凳
發(fā)表于 2025-3-22 01:20:00 | 只看該作者
地板
發(fā)表于 2025-3-22 08:38:00 | 只看該作者
Mining Frequent Partite Episodes with Partwise Constraintsstraint from an input event sequence. By theoretical analysis, we show that the algorithm runs in output polynomial time and polynomial space for the total input size. In the experiment, we show that our proposed algorithm is much faster than existing algorithms for mining partite episodes on an artificial and a real-world datasets.
5#
發(fā)表于 2025-3-22 11:11:34 | 只看該作者
ReliefF for Hierarchical Multi-label Classificationevaluation, we consider datasets from two prominent domains for HMC - functional genomics and image annotation. The results show that HMC-ReliefF can identify the relevant features present in the data and produces a ranking where they are placed among the top ranked ones.
6#
發(fā)表于 2025-3-22 15:06:00 | 只看該作者
A,:?A Generative Model for Labelled, Weighted Graphs parameters of the . model to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
7#
發(fā)表于 2025-3-22 17:21:54 | 只看該作者
A Relational Unsupervised Approach to Author Identificationnknown-author model to the known-author model, we can conclude that the author is the same. Preliminary results are promising and the approach seems viable in real contexts since it does not need a training phase and performs well also with short texts.
8#
發(fā)表于 2025-3-22 23:53:38 | 只看該作者
9#
發(fā)表于 2025-3-23 03:38:33 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:21 | 只看該作者
Conference proceedings 2014ewed and selected from numerous submissions. The papers are organized in topical sections on data streams and time series analysis, classification, clustering and pattern discovery, graphs, networks and relational data, machine learning and music data.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资兴市| 临城县| 绩溪县| 木兰县| 张家港市| 龙井市| 龙海市| 松江区| 大城县| 黄骅市| 巴塘县| 德兴市| 民乐县| 龙门县| 大英县| 伊金霍洛旗| 大石桥市| 怀柔区| 方城县| 稻城县| 若尔盖县| 嵊州市| 苍溪县| 綦江县| 赤城县| 农安县| 临沂市| 城口县| 白玉县| 弥渡县| 中宁县| 海淀区| 静乐县| 建瓯市| 建德市| 新民市| 朝阳县| 丰原市| 隆林| 阿瓦提县| 秦皇岛市|