找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: New Developments in Differential Geometry, Budapest 1996; Proceedings of the C J. Szenthe Conference proceedings 1999 Springer Science+Busi

[復(fù)制鏈接]
樓主: 五個
51#
發(fā)表于 2025-3-30 10:40:28 | 只看該作者
Harmonic Spinors and Topology,We discuss relations between the dimension of the solution space of the Dirac equation and the topology of the underlying manifold. It is shown that in certain dimensions existence of metrics with harmonic spinors is not topologically obstructed. In this respect the Dirac operator behaves very differently from the Laplace-Beltrami operator.
52#
發(fā)表于 2025-3-30 13:38:20 | 只看該作者
53#
發(fā)表于 2025-3-30 19:31:21 | 只看該作者
Harmonic Maps and F-Structures With Parallelizable Kernel,The study of harmonic maps on the contact metric manifolds was initiated in the papers [D-I-P],[I-P.],[I-P.],[I-P.].
54#
發(fā)表于 2025-3-30 20:52:57 | 只看該作者
On the Betti Numbers of a Generalized Hopf Manifold,We discuss the curvature operators ., . in a compact generalized Hopf manifold, and show that the manifold is cohomologically equivalent to the Hopf manifold if . or . is positive on a subspace.
55#
發(fā)表于 2025-3-31 01:28:00 | 只看該作者
56#
發(fā)表于 2025-3-31 06:11:01 | 只看該作者
On Semi-Riemannian Submersions,A generalization of semi-Riemannian submersions allowing degenerate submanifolds as fibres is given by making an application of semi-Riemannian maps to submersions. Also a fundamental equation of a regular semi-Riemannian submersion is obtained.
57#
發(fā)表于 2025-3-31 12:58:49 | 只看該作者
Time-Dependent Mechanical Systems With Non-Linear Constraints,A geometrical formalism for time-dependent lagrangian systems subjected to non-linear constraints is given in terms of jet manifolds. The solution of the constrained problem is discussed by using almost product structures along the constraint submanifold. A constrained Poincaré-Cartan two-form is defined.
58#
發(fā)表于 2025-3-31 14:20:03 | 只看該作者
On Uniqueness of Constant Mean Curvature Surfaces With Planar Boundary,We study constant mean curvature compact surfaces in Euclidean space with planar boundary. Two geometric conditions for these surfaces to be graphs are given.
59#
發(fā)表于 2025-3-31 21:07:13 | 只看該作者
60#
發(fā)表于 2025-4-1 00:53:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高平市| 南溪县| 望江县| 白朗县| 益阳市| 星座| 垣曲县| 咸阳市| 泾源县| 惠东县| 长垣县| 安徽省| 敦煌市| 邹平县| 青田县| 南澳县| 惠来县| 邢台县| 陵川县| 行唐县| 临清市| 西昌市| 昂仁县| 那曲县| 无锡市| 临夏市| 双牌县| 库尔勒市| 岐山县| 平湖市| 佛学| 内黄县| 聂拉木县| 金门县| 北碚区| 隆子县| 客服| 龙海市| 大丰市| 青浦区| 三台县|