找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthe; F.C.G.A. Nicolleau,C. Cambon,A.F. No

[復(fù)制鏈接]
樓主: Buchanan
21#
發(fā)表于 2025-3-25 04:18:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:36:41 | 只看該作者
23#
發(fā)表于 2025-3-25 14:46:33 | 只看該作者
The Effect of Turbulence on the Spreading of Infectious Airborne Droplets in Hospitals, properties change due to evaporation, the Wells (Am. J. Hyg. 20:611–618, .) droplet-nuclei hypothesis. In this paper we examine the effect of evaporation on their movement within a homogeneous turbulent environment. The effect of turbulence is to significantly increase the transmission distance and
24#
發(fā)表于 2025-3-25 16:23:16 | 只看該作者
25#
發(fā)表于 2025-3-25 22:49:26 | 只看該作者
Detached Eddy Simulation for Turbulent Flows in a Pipe with a Snowflake Fractal Orifice,r. The scheme exhibits low numerical dissipations for low speeds and needs no problem-dependent “cut-off Mach number”. The results for the flows after the orifice are compared with those of the corresponding experiment (Chong, PhD thesis, .). Comparisons show good agreements in the mean velocity profiles at the different holes.
26#
發(fā)表于 2025-3-26 02:10:04 | 只看該作者
,Can Kinematic Simulation Predict Richardson’s Regime?,.. for inertial subranges ../..≤10.. Above this value, the sweeping effect of the small scales by the large scales may need to be taken into consideration though we cannot yet conclude as to the reason for the KS departing from the prediction of Richardson’s locality assumption when ../..≥10..
27#
發(fā)表于 2025-3-26 08:12:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:35:19 | 只看該作者
The Impact of Kinematic Simulations on Quantum Turbulence Theory,he inertial range of the normal-fluid constituent provided significant new results like superfluid energy spectra scalings, the fractal dimension of superfluid vorticity, inertial range pressure spectra scalings exhibiting departure from classical Kolmogorov theory predictions, as well as useful insight into superfluid turbulence decay.
29#
發(fā)表于 2025-3-26 15:09:47 | 只看該作者
30#
發(fā)表于 2025-3-26 18:24:30 | 只看該作者
7樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天等县| 文化| 荃湾区| 长阳| 偏关县| 和顺县| 池州市| 惠安县| 金山区| 大方县| 南充市| 延吉市| 于田县| 菏泽市| 黄龙县| 郑州市| 雅江县| 喀喇| 娱乐| 关岭| 壤塘县| 托里县| 唐河县| 隆子县| 遂平县| 姚安县| 永和县| 赤壁市| 陆川县| 达孜县| 都兰县| 洪洞县| 屯门区| 南溪县| 海口市| 常宁市| 瑞金市| 上林县| 通海县| 甘泉县| 莎车县|