找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: New Advances in Soft Computing in Civil Engineering; AI-Based Optimizatio Gebrail Bekda?,Sinan Melih Nigdeli Book 2024 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Goiter
41#
發(fā)表于 2025-3-28 16:39:46 | 只看該作者
42#
發(fā)表于 2025-3-28 20:07:07 | 只看該作者
Machine Learning Approaches for Predicting Compressive and Shear Strength of EB FRP-Reinforced Concr enhancing structural performance, durability, and service life, yet accurately predicting the shear strength of these elements remains complex due to intricate interactions between influencing factors that conventional empirical equations struggle to capture. This comprehensive review critically a
43#
發(fā)表于 2025-3-29 02:17:24 | 只看該作者
44#
發(fā)表于 2025-3-29 05:31:29 | 只看該作者
Prediction of Bi-Linear Strength Envelope of Brazilian Soils Using Machine Learning Techniques,r, based on recently produced studies, it is believed that the development of computational models to estimate them is a tool capable of meeting this demand. This study aims, therefore, to develop a machine learning model capable of estimating bi-linear strength envelopes of soils. In order to achie
45#
發(fā)表于 2025-3-29 07:32:37 | 只看該作者
Assessment of Unconfined Compressive Strength of Stabilized Soil Using Artificial Intelligence Tool method of determining the UCS is often expensive and time-consuming. Also, the determination of UCS by conventional methods is less accurate and reliable because of the maintenance and calibration of instruments. Therefore, many empirical and advanced computational methods have been introduced and
46#
發(fā)表于 2025-3-29 13:06:14 | 只看該作者
A Review of Deformations Prediction for Oil and Gas Pipelines Using Machine and Deep Learning,preserving pipeline integrity is important for a secure and sustainable energy provider. The fast development of Machine Learning (ML) methods gives a beneficial possibility to build predictive models that can efficiently resolve these complex problems. This review paper principally emphasizes apply
47#
發(fā)表于 2025-3-29 15:38:33 | 只看該作者
,Determination of the Effect of XGBoost’s Parameters on a Structural Problem, walls have both structural constraints and constraints such as overturning, shear and soil-bearing capacity. In this chapter, a dataset is generated by optimizing the cantilever-type reinforced concrete retaining wall with Teaching Learning Based Optimization (TLBO). This dataset is analyzed with E
48#
發(fā)表于 2025-3-29 23:14:34 | 只看該作者
49#
發(fā)表于 2025-3-30 03:11:40 | 只看該作者
50#
發(fā)表于 2025-3-30 06:38:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义市| 平遥县| 巫溪县| 济南市| 遂宁市| 富民县| 中宁县| 绥中县| 和静县| 山丹县| 鹤庆县| 黄石市| 虹口区| 泾阳县| 峡江县| 滦南县| 自治县| 滁州市| 牟定县| 广宗县| 贵港市| 忻州市| 禹州市| 玉树县| 分宜县| 儋州市| 河间市| 乡城县| 湘西| 吉安市| 三原县| 汉沽区| 淮安市| 平潭县| 洛宁县| 泽库县| 西盟| 博兴县| 通河县| 晋城| 大名县|