找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Text-to-Speech Synthesis; Xu Tan Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nat

[復(fù)制鏈接]
樓主: 帳簿
11#
發(fā)表于 2025-3-23 11:24:24 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
12#
發(fā)表于 2025-3-23 14:58:33 | 只看該作者
13#
發(fā)表于 2025-3-23 21:49:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:40:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:42:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:04 | 只看該作者
Xu Tanticles. Some journals/authors provide data sets upon request or are readily available on the web. Other empirical examples are given in Lott and Ray (1992) and Berndt (1991). Finally I would like to thank my students Wei-Wen Xiong, Ming-Jang Weng and Kiseok Nam who solved several of these exercises.
17#
發(fā)表于 2025-3-24 14:18:42 | 只看該作者
Book 2023earning research and has broad applications in industry. This book introduces neural network-based TTS in the era of deep learning, aiming to provide a good understanding of neural TTS, current research and applications, and the future research trend...This book first introduces the history of TTS t
18#
發(fā)表于 2025-3-24 17:00:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:41:32 | 只看該作者
20#
發(fā)表于 2025-3-25 02:15:56 | 只看該作者
Data-Efficient TTSwith low data resources: (1) language level, where there lack of training data when we want to build TTS models for a language, and (2) speaker level, where there lack of training data when we want to build TTS models for a speaker. Thus, we mainly introduce data-efficient TTS methods from the two scenarios in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
攀枝花市| 博白县| 延川县| 嘉黎县| 南投县| 淳化县| 文登市| 秦皇岛市| 仙游县| 邓州市| 济阳县| 香港 | 元谋县| 全南县| 高雄市| 乐安县| 泸水县| 辽阳县| 建阳市| 平南县| 乐都县| 彩票| 蓝田县| 哈尔滨市| 昌乐县| 惠来县| 富宁县| 平利县| 博客| 微博| 山阳县| 桂林市| 阳东县| 民丰县| 保定市| 门头沟区| 赞皇县| 交城县| 三门峡市| 叙永县| 团风县|