找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Networks; A Systematic Introdu Raúl Rojas Textbook 1996 Springer-Verlag Berlin Heidelberg 1996 Spline.artificial intelligence.fuzzy

[復(fù)制鏈接]
樓主: Magnanimous
11#
發(fā)表于 2025-3-23 11:50:45 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:58 | 只看該作者
13#
發(fā)表于 2025-3-23 20:43:28 | 只看該作者
14#
發(fā)表于 2025-3-23 22:32:04 | 只看該作者
,Weighted Networks—The Perceptron,n and of simulating any finite automaton. From the biological point of view, however, the types of network that can be built are not very relevant. The computing units are too similar to conventional logic gates and the network must be completely specified before it can be used. There are no free pa
15#
發(fā)表于 2025-3-24 02:41:39 | 只看該作者
Perceptron Learning,meters adequate for a given task was left open. If two sets of points have to be separated linearly with a perceptron, adequate weights for the computing unit must be found. The operators that we used in the preceding chapter, for example for edge detection, used hand customized weights. Now we woul
16#
發(fā)表于 2025-3-24 06:49:39 | 只看該作者
Unsupervised Learning and Clustering Algorithms,eacher is needed to accept or reject the output and adjust the network weights if necessary. Some researchers have proposed alternative learning methods in which the network parameters are determined as a result of a self-organizing process. In . corrections to the network weights are not performed
17#
發(fā)表于 2025-3-24 11:08:13 | 只看該作者
The Backpropagation Algorithm, computing units. However the computational effort needed for finding the correct combination of weights increases substantially when more parameters and more complicated topologies are considered. In this chapter we discuss a popular learning method capable of handling such large learning problems—
18#
發(fā)表于 2025-3-24 17:22:02 | 只看該作者
Fast Learning Algorithms,arning problems were developed. After the pioneering work of Rosenblatt and others, no efficient learning algorithm for multilayer or arbitrary feed forward neural networks was known. This led some to the premature conclusion that the whole field had reached a dead-end. The rediscovery of the backpr
19#
發(fā)表于 2025-3-24 19:28:40 | 只看該作者
20#
發(fā)表于 2025-3-25 03:08:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀化市| 宁安市| 昭通市| 冕宁县| 揭东县| 郎溪县| 龙海市| 柳林县| 沿河| 锡林浩特市| 荆州市| 卢湾区| 定州市| 千阳县| 临清市| 吴桥县| 海原县| 衡东县| 临城县| 凌云县| 马公市| 鹤峰县| 长寿区| 兴安盟| 包头市| 城固县| 罗田县| 英吉沙县| 大名县| 桦甸市| 通城县| 林周县| 三河市| 逊克县| 许昌市| 盈江县| 襄垣县| 分宜县| 旬邑县| 镇原县| 临西县|