找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復制鏈接]
樓主: Maculate
11#
發(fā)表于 2025-3-23 12:24:50 | 只看該作者
Accelerate Support Vector Clustering via?Spectral Data Compression while preserving the key cluster properties of the original data sets based on a novel spectral data compression approach. Then, the resultant spectrally-compressed data sets are leveraged for the development of fast and high quality algorithm for support vector clustering. We conducted extensive e
12#
發(fā)表于 2025-3-23 15:15:48 | 只看該作者
A Novel Iterative Fusion Multi-task Learning Framework for?Solving Dense Predictiontimation, Edge Estimation, etc. With advanced deep learning, many dense prediction tasks have been greatly improved. Multi-task learning is one of the top research lines to boost task performance further. Properly designed multi-task model architectures have better performance and minor memory usage
13#
發(fā)表于 2025-3-23 19:12:25 | 只看該作者
Anti-interference Zeroing Neural Network Model for?Time-Varying Tensor Square Root Findingut existing research mainly focuses on solving the time-invariant matrix square root problem. So far, few researchers have studied the time-varying tensor square root (TVTSR) problem. In this study, a novel anti-interference zeroing neural network (AIZNN) model is proposed to solve TVTSR problem onl
14#
發(fā)表于 2025-3-24 01:20:29 | 只看該作者
15#
發(fā)表于 2025-3-24 05:00:00 | 只看該作者
16#
發(fā)表于 2025-3-24 10:26:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:14:42 | 只看該作者
18#
發(fā)表于 2025-3-24 16:21:57 | 只看該作者
19#
發(fā)表于 2025-3-24 21:01:55 | 只看該作者
Human-Guided Transfer Learning for Autonomous Robot sometimes unavoidable. While the long learning time can be tolerated for many problems, it is crucial for autonomous robots learning in physical environments. One way to alleviate this problem is through transfer learning, which applies knowledge from one domain to another. In this study, we propos
20#
發(fā)表于 2025-3-25 01:42:46 | 只看該作者
Leveraging Two-Scale Features to?Enhance Fine-Grained Object Retrievalion for fine-grained object retrieval (FGOR). However, existing methods construct the embedding based solely on features extracted by the last layer of CNN, neglecting the potential benefits of leveraging features from other layers. Based on the fact that features extracted by different layers of CN
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辛集市| 宁化县| 章丘市| 高雄县| 吉林省| 绵阳市| 阿尔山市| 邵武市| 曲阳县| 涞水县| 自治县| 山东省| 芮城县| 毕节市| 松滋市| 商南县| 星子县| 金阳县| 临澧县| 绥棱县| 仙桃市| 彩票| 夏津县| 大英县| 阳江市| 敦煌市| 巴马| 卢龙县| 繁昌县| 济宁市| 砚山县| 旬邑县| 彰化市| 阜康市| 昭苏县| 周至县| 读书| 谢通门县| 廉江市| 淮阳县| 伊川县|