找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 27th International C Haiqin Yang,Kitsuchart Pasupa,Irwin King Conference proceedings 2020 Springer Nature Sw

[復(fù)制鏈接]
樓主: deflate
51#
發(fā)表于 2025-3-30 09:55:20 | 只看該作者
Trajectory Anomaly Detection Based on the Mean Distance Deviationl measures mentioned above and under the framework of enhanced conformal prediction theory detection, we also build our own detector called Mean Distance Deviation Detector (MDD-ECAD). Using a large number of synthetic trajectory data and real world trajectory data on two detectors, the experimental
52#
發(fā)表于 2025-3-30 14:58:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:46:09 | 只看該作者
pired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
54#
發(fā)表于 2025-3-30 22:20:02 | 只看該作者
55#
發(fā)表于 2025-3-31 01:32:36 | 只看該作者
Hongxi Wei,Jing Zhang,Kexin Liupired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
56#
發(fā)表于 2025-3-31 09:04:47 | 只看該作者
Kai Xue,Yiyu Ding,Zhirong Yang,Natasa Nord,Mael Roger Albert Barillec,Hans Martin Mathisen,Meng Liu,pired SimSAX measure and clustering of subsequences (k-Means and Hierarchical clustering). Our results show that the clustering algorithms are much more sensitive to parameters and often find similarities that are not correct. SimSAX, on the other hand, can be calibrated to find fewer similarities b
57#
發(fā)表于 2025-3-31 13:06:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦东新区| 铜鼓县| 葫芦岛市| 深州市| 安达市| 井陉县| 洛南县| 莱芜市| 武胜县| 华容县| 万全县| 澄城县| 长丰县| 安顺市| 郓城县| 屏南县| 青川县| 蛟河市| 许昌市| 策勒县| 和平县| 通道| 宁安市| 高州市| 灵石县| 依兰县| 梧州市| 昂仁县| 正镶白旗| 临澧县| 洛隆县| 宣化县| 根河市| 井冈山市| 绿春县| 称多县| 泰和县| 广宁县| 无棣县| 鸡东县| 东丽区|