找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
41#
發(fā)表于 2025-3-28 18:19:16 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
Improving Out-of-Distribution Detection with?Margin-Based Prototype Learningntly improved OOD detection performance by optimizing the representation space. However, practical scenarios present a challenge where OOD samples near class boundaries may overlap with in-distribution samples in the feature space, resulting in misclassification, and few methods have considered the
43#
發(fā)表于 2025-3-29 01:37:36 | 只看該作者
Text-to-Image Synthesis with?Threshold-Equipped Matching-Aware GANtering inaccurate negative samples, the discriminator can more accurately determine whether the generator has generated the images correctly according to the descriptions. In addition, to enhance the discriminative model’s ability to discriminate and capture key semantic information, a word fine-gra
44#
發(fā)表于 2025-3-29 06:49:01 | 只看該作者
45#
發(fā)表于 2025-3-29 10:51:24 | 只看該作者
Dual-Branch Contrastive Learning for?Network Representation Learning network representation learning. However, existing GCL-based network representation methods mostly use a single-branch contrastive approach, which makes it difficult to learn deeper semantic relationships and is easily affected by noisy connections during the process of obtaining global structural
46#
發(fā)表于 2025-3-29 14:34:51 | 只看該作者
Multi-granularity Contrastive Siamese Networks for?Abstractive Text Summarizationformative summaries. Sequence-to-Sequence (Seq2 Seq) models have achieved good results in abstractive text summarization in recent years. However, such models are often sensitive to noise information in the training data and exhibit fragility in practical applications. To enhance the denoising abili
47#
發(fā)表于 2025-3-29 18:33:13 | 只看該作者
Joint Entity and?Relation Extraction for?Legal Documents Based on?Table Fillingstructured triplets from rich unstructured legal texts. However, the existing methods for joint entity relation extraction in legal judgment documents often lack domain-specific knowledge, and are difficult to effectively solve the problem of entity overlap in legal texts. To address these issues, w
48#
發(fā)表于 2025-3-29 21:40:42 | 只看該作者
49#
發(fā)表于 2025-3-30 03:14:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 通化市| 隆回县| 清新县| 长顺县| 许昌市| 奉贤区| 容城县| 凤冈县| 鄯善县| 阿克陶县| 新田县| 比如县| 红原县| 洛浦县| 台中市| 阿荣旗| 东兴市| 岳阳市| 南京市| 白水县| 宜城市| 如皋市| 忻州市| 余庆县| 寿阳县| 汾阳市| 永济市| 蒙山县| 鲜城| 威信县| 兰溪市| 曲水县| 奉新县| 库尔勒市| 普陀区| 韶关市| 泗水县| 张掖市| 高邮市| 浦北县|