找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearrings and Nearfields; Proceedings of the C Hubert Kiechle,Alexander Kreuzer,Momme Johs Thomse Conference proceedings 2005 Springer Scie

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:41:07 | 只看該作者
From Involution Sets, Graphs and Loops to Loop-Nearrings, §6 and §7. In §5 we derive a partial binary operation from an involution set and we discuss if such operation is a Bol operation or a K-operation, in §6, we relate involution sets with loops. In §7 we look for the possibility to construct loop-nearrings by considering the automorphism groups of loops.
22#
發(fā)表于 2025-3-25 08:21:09 | 只看該作者
Semi-Nearrings of Bivariate Polynomials over a Field operations on bivariate polynomials analogous to addition and composition of univariate polynomials. We investigate the seminearring of bivariate polynomials determined by these operations looking at its properties and internal algebraic structures.
23#
發(fā)表于 2025-3-25 12:50:30 | 只看該作者
Planar Near-Rings, Sandwich Near-Rings and Near-Rings with Right Identityg this result we characterize planar near-rings and near-rings solving the equation xa=c in terms of such centralizer near-rings with sandwich multiplication. We also get results on primitive near-rings and on minimal left ideals in primitive near-rings.
24#
發(fā)表于 2025-3-25 17:23:29 | 只看該作者
Some Problems Related to Near-Rings of MappingIn this paper we discuss three areas of research relative to near-rings of mappings and mention several open questions.
25#
發(fā)表于 2025-3-25 22:18:35 | 只看該作者
26#
發(fā)表于 2025-3-26 03:43:23 | 只看該作者
Difference Methods and Ferrero PairsWe present a construction method of BIB-designs from a finite group . and a group of automorphisms Φ on . such that |Φ(.)| = |Φ| for all . ∈ ., . ≠ 0. By using a generalization of the concept of a difference family we can so unify several previous constructions of BIB-designs from planar near-rings.
27#
發(fā)表于 2025-3-26 06:27:22 | 只看該作者
On the ,-Prime Radical of Near-RingsThe .-prime radical . of 0-symmetric near-rings is an idempotent Hoehnke radical; either .(.)=0 or .(.)=.(.) the prime radical. The radical classes of . and . coincide. In a universal class of near-rings, if the .-prime radical is complete then .=..
28#
發(fā)表于 2025-3-26 11:10:58 | 只看該作者
29#
發(fā)表于 2025-3-26 15:32:28 | 只看該作者
Near-Rings, Cohomology and ExtensionsAfter historical considerations on the cohomology of groups and near- rings and extensions of near-rings, we analyze some near-rings playing a r?le in constructing the cohomology of groups. Then the notion of pseudo-modules does appear naturally and it is presented.
30#
發(fā)表于 2025-3-26 17:00:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙陵县| 曲松县| 静乐县| 东丽区| 高州市| 通山县| 县级市| 老河口市| 武穴市| 祁东县| 大足县| 瑞昌市| 苍溪县| 公主岭市| 孝义市| 景泰县| 汾西县| 德江县| 化州市| 高雄县| 赤壁市| 连城县| 龙南县| 石首市| 南溪县| 津市市| 白银市| 绥化市| 蒲城县| 库尔勒市| 清镇市| 福海县| 木兰县| 丰都县| 长白| 阿荣旗| 内黄县| 两当县| 和顺县| 茂名市| 资兴市|