找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearly Pseudo-K?hler Manifolds and Related Special Holonomies; Lars Sch?fer Book 2017 Springer International Publishing AG 2017 Nearly K?h

[復(fù)制鏈接]
樓主: 哪能仁慈
11#
發(fā)表于 2025-3-23 10:03:24 | 只看該作者
Lars Sch?fercertainty. This class has very specific properties and can be obtained through very different approaches (upper and lower probabilities, evidence theory and random sets, at least). Moreover, there exists a subclass of particular interest, the class of possibility and necessity measures, which has le
12#
發(fā)表于 2025-3-23 14:16:37 | 只看該作者
13#
發(fā)表于 2025-3-23 20:55:50 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:52 | 只看該作者
ization and its applicationsin mathematical finance and game theory. The topics range from moreconventional approaches that look for minimal/maximal elements with respect tovector orders or set relations, to the new complete-lattice approach thatcomprises a coherent solution concept for set optimiza
15#
發(fā)表于 2025-3-24 03:41:40 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:01:39 | 只看該作者
18#
發(fā)表于 2025-3-24 15:36:19 | 只看該作者
Introduction, SU(3)-structure (.(0),?.(0)): . where . and .. For compact manifolds ., he showed that these equations are the flow equations of a certain Hamiltonian system and that any solution defined on some interval . defines a Riemannian metric on . × . with holonomy group in G.. We give a new proof of this
19#
發(fā)表于 2025-3-24 19:59:03 | 只看該作者
20#
發(fā)表于 2025-3-25 01:15:18 | 只看該作者
Lars Sch?ferrial optimization, network?and graph theory, switching design or boolean functions, simple multi-person?games and clutters, etc.978-3-319-11712-6978-3-319-11713-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰顺县| 修水县| 鹤壁市| 莲花县| 苏州市| 黔西| 永昌县| 松江区| 昂仁县| 揭西县| 岑溪市| 林西县| 桂阳县| 都兰县| 平定县| 林州市| 奉节县| 杂多县| 视频| 营口市| 增城市| 富顺县| 涟水县| 宁国市| 钦州市| 烟台市| 嘉禾县| 蒙山县| 休宁县| 荥阳市| 秀山| 曲松县| 丹巴县| 泸溪县| 大悟县| 铜梁县| 阿拉善盟| 连江县| 太白县| 名山县| 沾益县|