找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Nearly Integrable Infinite-Dimensional Hamiltonian Systems; Sergej B. Kuksin Book 1993 Springer-Verlag Berlin Heidelberg 1993 Hamiltonian

[復制鏈接]
樓主: 萬能
11#
發(fā)表于 2025-3-23 11:53:52 | 只看該作者
Book 1993, stating thatsolutions of the unperturbed equation that are quasiperiodicin time mostly persist in the perturbed one. The theoremisapplied to classical nonlinear PDE‘s with one-dimensionalspacevariable such as the nonlinear string and nonlinearSchr|dinger equation andshow that the equations have"re
12#
發(fā)表于 2025-3-23 16:38:36 | 只看該作者
Book 1993terest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.
13#
發(fā)表于 2025-3-23 22:06:54 | 只看該作者
0075-8434 s be of interest tomathematicians andphysicists working with nonlinear PDE‘s.An extensivesummary of the results and of related topics isprovided in the Introduction. All the nontraditionalmaterial used is discussed in the firstpart of the book andin five appendices.978-3-540-57161-2978-3-540-47920-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
14#
發(fā)表于 2025-3-23 22:44:43 | 只看該作者
hese partnerships involve an array of target audiences,ranging across the individual life span from infancy through old ageand involving a diverse set of groups978-1-4613-7297-4978-1-4615-5053-2Series ISSN 1566-7081
15#
發(fā)表于 2025-3-24 03:57:28 | 只看該作者
16#
發(fā)表于 2025-3-24 07:45:16 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:02:03 | 只看該作者
Symplectic structures and hamiltonian systems in scales of hilbert spaces,
20#
發(fā)表于 2025-3-25 02:46:35 | 只看該作者
Statement of the main theorem and its consequences,
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 15:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临沭县| 南投市| 惠州市| 马山县| 建德市| 聂拉木县| 丹江口市| 黔南| 平凉市| 沧源| 湘潭县| 襄城县| 永兴县| 临夏市| 永善县| 得荣县| 五原县| 烟台市| 花莲市| 来凤县| 宣武区| 嘉黎县| 肥东县| 庄浪县| 昌江| 金坛市| 兴仁县| 象山县| 扶绥县| 策勒县| 宜丰县| 库车县| 巴彦县| 当涂县| 湛江市| 陆良县| 文安县| 灌云县| 通城县| 梅州市| 城口县|