找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processingand Information Systems; 16th International C Rafael Mu?oz,Andrés Montoyo,Elisabeth Métais Conference proceeding

[復(fù)制鏈接]
樓主: 夾子
51#
發(fā)表于 2025-3-30 09:11:08 | 只看該作者
Extracting Explicit and Implicit Causal Relations from Sparse, Domain-Specific Textsth causal verbs, e.g. “to cause”. However, the challenges of extracting causal relations from domain-specific texts have been overlooked. Domain-specific texts are rife with causal relations that are implicitly expressed using verbal and non-verbal patterns, e.g. “reduce”, “drop in”, “due to”. Also,
52#
發(fā)表于 2025-3-30 16:18:44 | 只看該作者
53#
發(fā)表于 2025-3-30 18:59:39 | 只看該作者
Improving Subtree-Based Question Classification Classifiers with Word-Cluster Modelsas been indicated that [10] it is helpful for question classification problem. The authors empirically showed that subtree features obtained by subtree mining, were able to improve the performance of Question Classification for boosting and maximum entropy models. In this paper, our first goal is to
54#
發(fā)表于 2025-3-30 21:57:34 | 只看該作者
Data-Driven Approach Based on Semantic Roles for Recognizing Temporal Expressions and Events in Chiny stage and high-performance approaches are needed. Recently, in TempEval-2 evaluation exercise, corpora annotated in TimeML were released for different languages including Chinese. However, no systems were evaluated in this language. We present a data-driven approach for addressing these tasks in C
55#
發(fā)表于 2025-3-31 01:10:30 | 只看該作者
56#
發(fā)表于 2025-3-31 06:11:43 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:14 | 只看該作者
OntoFIS as a NLP Resource in the Drug-Therapy Domain: Design Issues and Solutions Appliedral informational resources, semantically annotated, are under development. One of the existing development lines is oriented to reusing the effort spent on the design of the existing resources on the Web and obtaining knowledge-based resources for natural language processing (NLP) tasks. In this li
58#
發(fā)表于 2025-3-31 16:37:49 | 只看該作者
59#
發(fā)表于 2025-3-31 19:22:09 | 只看該作者
A System for Adaptive Information Extraction from Highly Informal Textes, classified ads, tweets, etc. It is built on a modular architecture that integrates in a transparent way off-the-shelf NLP tools, general procedures on strings and machine learning and processes tailored to a domain..The system is called adaptive because it implements a semi-supervised approach.
60#
發(fā)表于 2025-4-1 00:29:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昂仁县| 景德镇市| 安福县| 南溪县| 邵阳市| 开封县| 临夏县| 泸西县| 郁南县| 合川市| 阿尔山市| 都安| 海丰县| 东兰县| 鄂尔多斯市| 喀喇| 左贡县| 东海县| 张家界市| 元谋县| 和林格尔县| 石林| 黄冈市| 台前县| 交口县| 方城县| 蛟河市| 宜兴市| 绿春县| 巩义市| 阳谷县| 尼木县| 九台市| 宁化县| 永宁县| 容城县| 顺义区| 铜陵市| 于田县| 文山县| 黎平县|