找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 11th CCF Internation Wei Lu,Shujian Huang,Xiabing Zhou Conference proceedings 2022 The E

[復(fù)制鏈接]
樓主: 貪求
41#
發(fā)表于 2025-3-28 15:31:47 | 只看該作者
42#
發(fā)表于 2025-3-28 21:35:18 | 只看該作者
Contrastive Learning for?Robust Neural Machine Translation with?ASR Errorsso very brittle and easily falter when fed with noisy sentences, i.e., from automatic speech recognition (ASR) output. Due to the lack of Chinese-to-English translation test set with natural Chinese-side ASR output, related studies artificially add noise into Chinese sentences to evaluation translat
43#
發(fā)表于 2025-3-29 02:25:04 | 只看該作者
44#
發(fā)表于 2025-3-29 04:35:05 | 只看該作者
45#
發(fā)表于 2025-3-29 08:43:31 | 只看該作者
Regularized Contrastive Learning of?Semantic Searchroperly learn the semantics of sentences. Transformer-based models are widely used as retrieval models due to their excellent ability to learn semantic representations. in the meantime, many regularization methods suitable for them have also been proposed. In this paper, we propose a new regularizat
46#
發(fā)表于 2025-3-29 13:59:29 | 只看該作者
Kformer: Knowledge Injection in?Transformer Feed-Forward Layersthe PTMs’ own ability with quantities of implicit knowledge stored in parameters. A recent study [.] has observed knowledge neurons in the Feed Forward Network (FFN), which are responsible for expressing factual knowledge. In this work, we propose a simple model, Kformer, which takes advantage of th
47#
發(fā)表于 2025-3-29 18:08:21 | 只看該作者
Doge Tickets: Uncovering Domain-General Language Models by?Playing Lottery Ticketsrning capacity of LMs can also lead to large learning variance. In a pilot study, we find that, when faced with multiple domains, a critical portion of parameters behave unexpectedly in a domain-specific manner while others behave in a domain-general one. Motivated by this phenomenon, we for the fir
48#
發(fā)表于 2025-3-29 21:55:37 | 只看該作者
BART-Reader: Predicting Relations Between Entities via?Reading Their Document-Level Context Informat separate entities, the importance of its mentions varies, which means the entity representation should be different. However, most of the previous RE models failed to make the relation classification entity-pair aware effectively. To that end, we propose a novel adaptation to simultaneously utilize
49#
發(fā)表于 2025-3-30 00:17:21 | 只看該作者
50#
發(fā)表于 2025-3-30 07:11:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 12:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东山县| 泾源县| 友谊县| 洛扎县| 武胜县| 天水市| 永德县| 亳州市| 文水县| 福泉市| 漳平市| 辉县市| 南充市| 杨浦区| 商洛市| 宾阳县| 益阳市| 南和县| 常德市| 大城县| 电白县| 潜山县| 洪湖市| 盐池县| 教育| 龙陵县| 凌云县| 长治县| 诸暨市| 收藏| 逊克县| 讷河市| 平谷区| 枞阳县| 青州市| 尼木县| 交城县| 海盐县| 雅安市| 东兰县| 英吉沙县|