找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Natural Language Processing and Chinese Computing; 7th CCF Internationa Min Zhang,Vincent Ng,Hongying Zan Conference proceedings 2018 Sprin

[復(fù)制鏈接]
樓主: hierarchy
11#
發(fā)表于 2025-3-23 13:46:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:27:56 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:30 | 只看該作者
From Humour to Hatred: A Computational Analysis of Off-Colour Humourssential so that free-speech on the internet is not curtailed. Our experiments show that deep learning methods outperforms other n-grams based approaches like SVM’s, Naive Bayes and Logistic Regression by a large margin.
14#
發(fā)表于 2025-3-23 22:36:26 | 只看該作者
15#
發(fā)表于 2025-3-24 04:37:45 | 只看該作者
Summary++: Summarizing Chinese News Articles with Attentionrchive second place in the task with a score of 0.285. The highlights of our model is that it run at character level, no extra features (e.g. part of speech, dependency structure) were used and very little preprocessing were done.
16#
發(fā)表于 2025-3-24 09:54:45 | 只看該作者
Neural Chinese Word Segmentation with Dictionary Knowledgehe second one is based on multi-task learning. The experimental results on two benchmark datasets validate that our approach can effectively improve the performance of Chinese word segmentation, especially when training data is insufficient.
17#
發(fā)表于 2025-3-24 10:59:54 | 只看該作者
18#
發(fā)表于 2025-3-24 17:33:56 | 只看該作者
19#
發(fā)表于 2025-3-24 20:46:08 | 只看該作者
Ensemble of Binary Classification for the Emotion Detection in Code-Switching Texte a novel method of converting multi-label classification into binary classification task and ensemble learning for code-switching text with sampling and emotion lexicon. Experiments show that the proposed method has achieved better performance in the code-switching text task.
20#
發(fā)表于 2025-3-25 00:42:20 | 只看該作者
0302-9743 /IE; machine learning for NLP; machine translation; and NLP applications. The papers of the second volume are organized as follows: NLP for social network; NLP fundamentals; text mining; and short papers..978-3-319-99500-7978-3-319-99501-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
竹北市| 广汉市| 湘乡市| 资源县| 卓尼县| 阜新市| 广德县| 桑日县| 黎平县| 临朐县| 寿阳县| 达尔| 贵州省| 肥东县| 阜平县| 山东| 会东县| 泰兴市| 班戈县| 怀远县| 双城市| 宣威市| 益阳市| 武鸣县| 永德县| 绵竹市| 丰县| 太和县| 靖宇县| 甘德县| 呼伦贝尔市| 牙克石市| 化隆| 青田县| 长乐市| 太和县| 汉川市| 鄂托克前旗| 博兴县| 安龙县| 商河县|