找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Multiscale Modeling in Epitaxial Growth; Axel Voigt Conference proceedings 2005 Birkh?user Basel 2005 Finite.differential equation.epitaxi

[復制鏈接]
查看: 19657|回復: 35
樓主
發(fā)表于 2025-3-21 17:12:58 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Multiscale Modeling in Epitaxial Growth
編輯Axel Voigt
視頻videohttp://file.papertrans.cn/642/641154/641154.mp4
概述Proceedings of an Oberwolfach Conference, suggested by K.-H. Hoffmann.First available overview of highly active research field in modeling epitaxial growth.Introduction given to kinetic Monte Carlo, s
叢書名稱International Series of Numerical Mathematics
圖書封面Titlebook: Multiscale Modeling in Epitaxial Growth;  Axel Voigt Conference proceedings 2005 Birkh?user Basel 2005 Finite.differential equation.epitaxi
描述.Epitaxy is a very active area of theoretical research since several years. It is experimentally well-explored and technologically relevant for thin film growth. Recently powerful numerical techniques in combination with a deep understanding of the physical and chemical phenomena during the growth process offer the possibility to link atomistic effects at the surface to the macroscopic morphology of the film. The goal of this book is to summarize recent developments in this field, with emphasis on multiscale approaches and numerical methods. It covers atomistic, step-flow, and continuum models and provides a compact overview of these approaches. It also serves as an introduction into this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists..
出版日期Conference proceedings 2005
關鍵詞Finite; differential equation; epitaxial growth; equation; finite element method; multiscale analysis; num
版次1
doihttps://doi.org/10.1007/b137679
isbn_ebook978-3-7643-7343-6Series ISSN 0373-3149 Series E-ISSN 2296-6072
issn_series 0373-3149
copyrightBirkh?user Basel 2005
The information of publication is updating

書目名稱Multiscale Modeling in Epitaxial Growth影響因子(影響力)




書目名稱Multiscale Modeling in Epitaxial Growth影響因子(影響力)學科排名




書目名稱Multiscale Modeling in Epitaxial Growth網(wǎng)絡公開度




書目名稱Multiscale Modeling in Epitaxial Growth網(wǎng)絡公開度學科排名




書目名稱Multiscale Modeling in Epitaxial Growth被引頻次




書目名稱Multiscale Modeling in Epitaxial Growth被引頻次學科排名




書目名稱Multiscale Modeling in Epitaxial Growth年度引用




書目名稱Multiscale Modeling in Epitaxial Growth年度引用學科排名




書目名稱Multiscale Modeling in Epitaxial Growth讀者反饋




書目名稱Multiscale Modeling in Epitaxial Growth讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:27:57 | 只看該作者
地板
發(fā)表于 2025-3-22 07:13:04 | 只看該作者
https://doi.org/10.1007/b137679Finite; differential equation; epitaxial growth; equation; finite element method; multiscale analysis; num
5#
發(fā)表于 2025-3-22 12:28:21 | 只看該作者
6#
發(fā)表于 2025-3-22 14:32:01 | 只看該作者
0373-3149 to this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists..978-3-7643-7343-6Series ISSN 0373-3149 Series E-ISSN 2296-6072
7#
發(fā)表于 2025-3-22 20:35:48 | 只看該作者
Conference proceedings 2005ilm growth. Recently powerful numerical techniques in combination with a deep understanding of the physical and chemical phenomena during the growth process offer the possibility to link atomistic effects at the surface to the macroscopic morphology of the film. The goal of this book is to summarize
8#
發(fā)表于 2025-3-23 00:07:39 | 只看該作者
9#
發(fā)表于 2025-3-23 02:11:10 | 只看該作者
0373-3149 pitaxial growth.Introduction given to kinetic Monte Carlo, s.Epitaxy is a very active area of theoretical research since several years. It is experimentally well-explored and technologically relevant for thin film growth. Recently powerful numerical techniques in combination with a deep understandin
10#
發(fā)表于 2025-3-23 05:37:02 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
游戏| 攀枝花市| 邵东县| 达拉特旗| 乌什县| 聂荣县| 临桂县| 延津县| 东乌珠穆沁旗| 仁寿县| 望奎县| 双辽市| 东辽县| 怀化市| 娱乐| 二连浩特市| 巴林右旗| 木里| 同江市| 永兴县| 叙永县| 广灵县| 南澳县| 特克斯县| 昭通市| 临汾市| 濮阳县| 新野县| 彭州市| 昌平区| 正镶白旗| 岳阳县| 漳平市| 洪雅县| 筠连县| 汉川市| 井冈山市| 日土县| 元谋县| 灯塔市| 馆陶县|