找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Modern Algorithms of Cluster Analysis; Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster

[復(fù)制鏈接]
查看: 53725|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:37:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Modern Algorithms of Cluster Analysis
編輯Slawomir‘Wierzchoń,Mieczyslaw K?opotek
視頻videohttp://file.papertrans.cn/637/636903/636903.mp4
概述Provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
叢書名稱Studies in Big Data
圖書封面Titlebook: Modern Algorithms of Cluster Analysis;  Slawomir‘Wierzchoń,Mieczyslaw K?opotek Book 2018 Springer International Publishing AG 2018 Cluster
描述.This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc..?.The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem..?.Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented..?.In addition, the book provides an overview of approaches to handling large collec
出版日期Book 2018
關(guān)鍵詞Cluster Analysis; Big Data; Data Sets; Spectral Clustering; Combinatorial Cluster Analysis
版次1
doihttps://doi.org/10.1007/978-3-319-69308-8
isbn_softcover978-3-319-88752-4
isbn_ebook978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
issn_series 2197-6503
copyrightSpringer International Publishing AG 2018
The information of publication is updating

書目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)




書目名稱Modern Algorithms of Cluster Analysis影響因子(影響力)學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開度




書目名稱Modern Algorithms of Cluster Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis被引頻次




書目名稱Modern Algorithms of Cluster Analysis被引頻次學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis年度引用




書目名稱Modern Algorithms of Cluster Analysis年度引用學(xué)科排名




書目名稱Modern Algorithms of Cluster Analysis讀者反饋




書目名稱Modern Algorithms of Cluster Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:56 | 只看該作者
Book 2018ok explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to pre
板凳
發(fā)表于 2025-3-22 00:47:32 | 只看該作者
地板
發(fā)表于 2025-3-22 05:15:46 | 只看該作者
5#
發(fā)表于 2025-3-22 09:12:45 | 只看該作者
978-3-319-88752-4Springer International Publishing AG 2018
6#
發(fā)表于 2025-3-22 13:33:59 | 只看該作者
Modern Algorithms of Cluster Analysis978-3-319-69308-8Series ISSN 2197-6503 Series E-ISSN 2197-6511
7#
發(fā)表于 2025-3-22 20:03:29 | 只看該作者
Studies in Big Datahttp://image.papertrans.cn/m/image/636903.jpg
8#
發(fā)表于 2025-3-23 00:10:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:09:04 | 只看該作者
Slawomir‘Wierzchoń,Mieczyslaw K?opotekProvides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, and cluster analysis.Presents a number of approaches to handling a large number of objects
10#
發(fā)表于 2025-3-23 05:58:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西华县| 界首市| 芦溪县| 汕头市| 乃东县| 轮台县| 乌拉特后旗| 新宾| 南岸区| 海林市| 沙坪坝区| 灌云县| 绥德县| 汾西县| 镇远县| 乌拉特后旗| 上高县| 克东县| 雅江县| 偃师市| 敦煌市| 尚志市| 广水市| 石柱| 庄河市| 镇远县| 呈贡县| 留坝县| 岱山县| 建水县| 黑山县| 郓城县| 波密县| 五台县| 南通市| 盱眙县| 绥滨县| 德惠市| 新乡县| 县级市| 平泉县|