找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Metrical Theory of Continued Fractions; Marius Iosifescu,Cor Kraaikamp Book 2002 Springer Science+Business Media B.V. 2002 Ergodic theory.

[復(fù)制鏈接]
樓主: Jaundice
11#
發(fā)表于 2025-3-23 11:20:22 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/m/image/632474.jpg
12#
發(fā)表于 2025-3-23 17:39:56 | 只看該作者
978-90-481-6130-0Springer Science+Business Media B.V. 2002
13#
發(fā)表于 2025-3-23 20:52:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:16:15 | 只看該作者
15#
發(fā)表于 2025-3-24 02:43:37 | 只看該作者
Basic properties of the continued fraction expansion,In this chapter the (regular) continued fraction expansion is introduced and notation fixed. Some basic properties to be used in subsequent chapters are also derived.
16#
發(fā)表于 2025-3-24 10:12:48 | 只看該作者
17#
發(fā)表于 2025-3-24 14:33:09 | 只看該作者
18#
發(fā)表于 2025-3-24 15:15:50 | 只看該作者
Book 2002) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···
19#
發(fā)表于 2025-3-24 20:43:57 | 只看該作者
where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),··· , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),···978-90-481-6130-0978-94-015-9940-5
20#
發(fā)表于 2025-3-25 00:22:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长治市| 肇东市| 绵阳市| 大庆市| 师宗县| 阳新县| 出国| 包头市| 泸州市| 沁源县| 沾化县| 堆龙德庆县| 泾源县| 凉山| 奉新县| 定结县| 广宗县| 大悟县| 惠安县| 盐津县| 邮箱| 怀来县| 钦州市| 阜新| 苍南县| 吴江市| 阜宁县| 镇巴县| 水富县| 丰城市| 兰溪市| 南昌县| 泗阳县| 林口县| 延吉市| 崇信县| 疏附县| 山西省| 萨嘎县| 大埔县| 义马市|