找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Methods of Mathematical Oncology; Fusion of Mathematic Takashi Suzuki,Clair Poignard,Vito Quaranta Conference proceedings 2021 Springer Nat

[復(fù)制鏈接]
樓主: antibody
31#
發(fā)表于 2025-3-26 21:22:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:07:06 | 只看該作者
33#
發(fā)表于 2025-3-27 07:17:38 | 只看該作者
Constitutive Modelling of Soft Biological Tissue from Ex Vivo to in Vivo: Myocardium as an Examplee is a critical need for accurate quantification of the biomechanical homeostasis in soft tissue through mathematical modelling, which is critically dependent on constitutive models, the mathematical descriptions that approximate the mechanical behaviours of material under specific conditions by con
34#
發(fā)表于 2025-3-27 09:33:01 | 只看該作者
Mathematical Modeling of Gastro-Intestinal Metastasis Resistance to Tyrosine Kinase Inhibitors first-line treatment is a specific tyrosine kinase inhibitor (TKI), with a cytotoxic effect, that induces direct cell death. The second-line treatment is a multi-targeted TKI, with both cytotoxic and anti-angiogenic effect. The model is a coupled hyperbolic/elliptic system based on mass balance equ
35#
發(fā)表于 2025-3-27 14:54:18 | 只看該作者
36#
發(fā)表于 2025-3-27 20:26:40 | 只看該作者
37#
發(fā)表于 2025-3-28 00:07:15 | 只看該作者
Mathematical Modeling for Angiogenesisstand complex movements of endothelial cells and molecular processes that drive angiogenic morphogenesis, time-lapse live imaging of dynamic collective cell migration and mathematical modeling have proven highly informative. This paper focuses on recent mathematical models for the dynamics of endoth
38#
發(fā)表于 2025-3-28 05:23:30 | 只看該作者
39#
發(fā)表于 2025-3-28 07:04:24 | 只看該作者
Free Boundary Problem of Cell Deformation and Invasionnvasion of cell involving the interaction across plasma membrane is considered. The formation is formulated by Stefan problem approach which is known as free boundary problem where the boundary membrane is priori unknown. Changes in cell membrane will lead to protrusions of cell membrane. A normal g
40#
發(fā)表于 2025-3-28 11:35:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰宁县| 太康县| 大关县| 奈曼旗| 庆阳市| 集安市| 酉阳| 惠来县| 通山县| 邢台县| 铜川市| 邓州市| 新竹市| 连平县| 鄱阳县| 中卫市| 济源市| 昌乐县| 丰原市| 益阳市| 黄骅市| 阆中市| 竹北市| 新竹县| 多伦县| 安庆市| 昌吉市| 新沂市| 五华县| 清新县| 东明县| 齐河县| 石渠县| 叙永县| 文昌市| 琼海市| 华亭县| 石首市| 济南市| 黄梅县| 乌拉特前旗|